हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

The Equation of a Wave Travelling on a String is (A) in Which Direction Does - Physics

Advertisements
Advertisements

प्रश्न

The equation of a wave travelling on a string is \[y = \left( 0 \cdot 10  \text{ mm } \right)  \sin\left[ \left( 31 \cdot 4  m^{- 1} \right)x + \left( 314  s^{- 1} \right)t \right]\]
(a) In which direction does the wave travel? (b) Find the wave speed, the wavelength and the frequency of the wave. (c) What is the maximum displacement and the maximum speed of a portion of the string?

परिभाषा
योग

उत्तर

Given,
Equation of the wave,
\[y = \left( 0 . 10  \text{ mm } \right)  \sin\left( 31 . 4  m^{- 1} \right)x + \left( 314  s^{- 1} \right)  t\]
The general equation is \[y = A\sin\left\{ \left( \frac{2\pi x}{\lambda} \right) + \omega t \right\}\] 
From the above equation, we can conclude:
(a) The wave is travelling in the negative x-direction.
(b) \[\frac{2\pi}{\lambda} = 31 . 4   m^{- 1}\] 

\[\Rightarrow \lambda = \frac{2\pi}{31 . 4} = 0 . 2  m =   20  cm\]
And,
\[\omega = 314   s^{- 1} \] 

\[ \Rightarrow 2\pi f = 314\] 

\[ \Rightarrow f = \frac{314}{2\pi}\] 

\[= \frac{314}{2 \times 3 . 14}\] 

\[= 50   s^{- 1}  = 50  Hz\]
Wave speed:

\[\nu = \lambda f = 20 \times 50\] 

\[=1000  cm/s\]
(c) Maximum displacement, A = 0.10 mm

Maximum  velocity = \[a\omega = 0 . 1 \times  {10}^{- 1}  \times 314\] 

= 3.14  cm/s

shaalaa.com
The Speed of a Travelling Wave
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Wave Motion and Waves on a String - Exercise [पृष्ठ ३२४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 15 Wave Motion and Waves on a String
Exercise | Q 8 | पृष्ठ ३२४

संबंधित प्रश्न

A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at 20 °C = 343 m s–1.


A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, what is the wavelength of the transmitted sound? The speed of sound in air is 340 m s–1 and in water 1486 m s–1.


For the wave described in Exercise 15.8, plot the displacement (y) versus (t) graphs for x = 0, 2 and 4 cm. What are the shapes of these graphs? In which aspects does the oscillatory motion in travelling wave differ from one point to another: amplitude, frequency or phase?


A metre-long tube open at one end, with a movable piston at the other end, shows resonance with a fixed frequency source (a tuning fork of frequency 340 Hz) when the tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the temperature of the experiment. The edge effects may be neglected.


A train, standing in a station-yard, blows a whistle of frequency 400 Hz in still air. The wind starts blowing in the direction from the yard to the station with at a speed of 10 m s–1. What are the frequency, wavelength, and speed of sound for an observer standing on the station’s platform? Is the situation exactly identical to the case when the air is still and the observer runs towards the yard at a speed of 10 m s–1? The speed of sound in still air can be taken as 340 m s–1.


Two strings A and B, made of same material, are stretched by same tension. The radius of string A is double of the radius of B. A transverse wave travels on A with speed `v_A` and on B with speed `v_B`. The ratio `v_A/v_B` is ______.


Velocity of sound in air is 332 m s−1. Its velocity in vacuum will be


A wave pulse, travelling on a two-piece string, gets partially reflected and partially transmitted at the junction. The reflected wave is inverted in shape as compared to the incident one. If the incident wave has wavelength λ and the transmitted wave λ'


Two wave pulses travel in opposite directions on a string and approach each other. The shape of one pulse is inverted with respect to the other.


Two sine waves travel in the same direction in a medium. The amplitude of each wave is A and the phase difference between the two waves is 120°. The resultant amplitude will be


The equation of a wave travelling on a string stretched along the X-axis is given by
\[y = A  e {}^-  \left( \frac{x}{a} + \frac{t}{T} \right)^2  .\]
(a) Write the dimensions of A, a and T. (b) Find the wave speed. (c) In which direction is the wave travelling? (d) Where is the maximum of the pulse located at t = T? At t = 2 T?


A string of length 20 cm and linear mass density 0⋅40 g cm−1 is fixed at both ends and is kept under a tension of 16 N. A wave pulse is produced at t = 0 near an ends as shown in the figure, which travels towards the other end. (a) When will the string have the shape shown in the figure again? (b) Sketch the shape of the string at a time half of that found in part (a).


Following figure shows a string stretched by a block going over a pulley. The string vibrates in its tenth harmonic in unison with a particular tuning for. When a beaker containing water is brought under the block so that the block is completely dipped into the beaker, the string vibrates in its eleventh harmonic. Find the density of the material of the block.


An organ pipe of length 0.4 m is open at both ends. The speed of sound in the air is 340 m/s. The fundamental frequency is ______ 


A string 1 m long is fixed at one end. The other end is moved up and down with a frequency of 20 Hz. Due to this, a stationary wave with four complete loops gets produced on the string. Find the speed of the progressive wave which produces the stationary wave. 


For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of 4 m.


A steel wire has a length of 12 m and a mass of 2.10 kg. What will be the speed of a transverse wave on this wire when a tension of 2.06 × 104N is applied?


If c is r.m.s. speed of molecules in a gas and v is the speed of sound waves in the gas, show that c/v is constant and independent of temperature for all diatomic gases.


An engine is approaching a cliff at a constant speed. When it is at a distance of 0.9 km from cliff it sounds a whistle. The echo of the sound is heard by the driver after 5 seconds. Velocity of sound in air is equal to 330 ms-1. The speed of the engine is ______ km/h.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×