हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Two strings A and B, made of same material, are stretched by same tension. The radius of string A is double of the radius of B. A transverse wave travels on A with speed vA and on B with speed vB. - Physics

Advertisements
Advertisements

प्रश्न

Two strings A and B, made of same material, are stretched by same tension. The radius of string A is double of the radius of B. A transverse wave travels on A with speed `v_A` and on B with speed `v_B`. The ratio `v_A/v_B` is ______.

विकल्प

  • `1/2`

  • 2

  • `1/4`

  • 4

MCQ
रिक्त स्थान भरें

उत्तर

Two strings A and B, made of same material, are stretched by same tension. The radius of string A is double of the radius of B. A transverse wave travels on A with speed `v_A` and on B with speed `v_B`. The ratio `v_A/v_B` is `underlinebb(1/2)`.

Explanation:

Wave speed is given by
\[\nu = \sqrt{\frac{T}{\mathrm{\mu}}}\]
where
T is the tension in the string
v is the speed of the wave
μ is the mass per unit length of the string

\[\mathrm{\mu}  = \frac{M}{L} = \rho\frac{V}{L} = \rho\frac{\left( AL \right)}{L}\]
where
M is the mass of the string, which can be written as ρV.
L is the length of the string.

\[= \rho\left( \pi r^2 \right) = \rho\left( \pi\frac{D^2}{4} \right)\] 

\[ \therefore \nu = \sqrt{\frac{T}{\rho\pi\frac{D^2}{4}}} = \frac{2}{D}\sqrt{\frac{T}{\rho\pi}}\]

where D is the diameter of the string.

Thus, v ∝
\[\frac{1}{D}\] Since, rA = 2rB 

\[v_A  \propto \frac{1}{2 r_A} \propto \frac{1}{2 \times 2 r_B}                                            (1)\] 

\[ v_{{}_B}  \propto \frac{1}{2 r_{{}_B}}                                                                            (2)\]

From Equations (1) and (2) we get  \[\frac{v_A}{v_B} = \frac{1}{2}\].

shaalaa.com
The Speed of a Travelling Wave
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Wave Motion and Waves on a String - MCQ [पृष्ठ ३२२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 15 Wave Motion and Waves on a String
MCQ | Q 7 | पृष्ठ ३२२

संबंधित प्रश्न

A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at 20 °C = 343 m s–1.


A steel rod 100 cm long is clamped at its middle. The fundamental frequency of longitudinal vibrations of the rod is given to be 2.53 kHz. What is the speed of sound in steel?


Show that for a wave travelling on a string 
\[\frac{y_{max}}{\nu_{max}} = \frac{\nu_{max}}{\alpha_{max}},\]

where the symbols have usual meanings. Can we use componendo and dividendo taught in algebra to write
\[\frac{y_{max} + \nu_{max}}{\nu_{max} - \nu_{max}} = \frac{\nu_{max} + \alpha_{max}}{\nu_{max} - \alpha_{max}}?\]


A wave pulse, travelling on a two-piece string, gets partially reflected and partially transmitted at the junction. The reflected wave is inverted in shape as compared to the incident one. If the incident wave has wavelength λ and the transmitted wave λ'


Two wires A and B, having identical geometrical construction, are stretched from their natural length by small but equal amount. The Young modules of the wires are YA and YB whereas the densities are \[\rho_A \text{ and }   \rho_B\]. It is given that YA > YB and \[\rho_A  >  \rho_B\]. A transverse signal started at one end takes a time t1 to reach the other end for A and t2 for B.


Two wave pulses travel in opposite directions on a string and approach each other. The shape of one pulse is inverted with respect to the other.


A sonometer wire of length l vibrates in fundamental mode when excited by a tuning fork of frequency 416. Hz. If the length is doubled keeping other things same, the string will ______.


A wave travels along the positive x-direction with a speed of 20 m s−1. The amplitude of the wave is 0⋅20 cm and the wavelength 2⋅0 cm. (a) Write the suitable wave equation which describes this wave. (b) What is the displacement and velocity of the particle at x= 2⋅0 cm at time = 0 according to the wave equation written? Can you get different values of this quantity if the wave equation is written in a different fashion?


A wave travelling on a string at a speed of 10 m s−1 causes each particle of the string to oscillate with a time period of 20 ms. (a) What is the wavelength of the wave? (b) If the displacement of a particle of 1⋅5 mm at a certain instant, what will be the displacement of a particle 10 cm away from it at the same instant?


Two long strings A and B, each having linear mass density
\[1 \cdot 2 \times  {10}^{- 2}   kg   m^{- 1}\] , are stretched by different tensions 4⋅8 N and 7⋅5 N respectively and are kept parallel to each other with their left ends at x = 0. Wave pulses are produced on the strings at the left ends at t = 0 on string A and at t = 20 ms on string B. When and where will the pulse on B overtake that on A?


A 200 Hz wave with amplitude 1 mm travels on a long string of linear mass density 6 g m−1 kept under a tension of 60 N. (a) Find the average power transmitted across a given point on the string. (b) Find the total energy associated with the wave in a 2⋅0 m long portion of the string.


A steel wire fixed at both ends has a fundamental frequency of 200 Hz. A person can hear sound of maximum frequency 14 kHz. What is the highest harmonic that can be played on this string which is audible to the person?


A 40 cm wire having a mass of 3⋅2 g is stretched between two fixed supports 40⋅05 cm apart. In its fundamental mode, the wire vibrates at 220 Hz. If the area of cross section of the wire is 1⋅0 mm2, find its Young modulus.


An organ pipe of length 0.4 m is open at both ends. The speed of sound in the air is 340 m/s. The fundamental frequency is ______ 


What is the interference of sound waves? 


Use the formula `v = sqrt((gamma P)/rho)` to explain why the speed of sound in air is independent of pressure.


A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, what is the wavelength of the the reflected sound? The speed of sound in air is 340 m s–1 and in water 1486 m s–1.


Sound waves of wavelength λ travelling in a medium with a speed of v m/s enter into another medium where its speed is 2v m/s. Wavelength of sound waves in the second medium is ______.


A steel wire has a length of 12 m and a mass of 2.10 kg. What will be the speed of a transverse wave on this wire when a tension of 2.06 × 104N is applied?


Two perfectly identical wires kept under tension are in unison. When the tension in the wire is increased by 1% then on sounding them together 3 beats are heard in 2 seconds. What is the frequency of each wire?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×