हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

The Electric Field at the Origin is Along the Positive X-axis. a Small Circle is Drawn with the Centre at the Origin, Cutting the Axes at Points A, B, C and D with Coordinates (A, 0), (0, A), (−A, 0), - Physics

Advertisements
Advertisements

प्रश्न

The electric field at the origin is along the positive x-axis. A small circle is drawn with the centre at the origin, cutting the axes at points A, B, C and D with coordinates (a, 0), (0, a), (−a, 0), (0, −a), respectively. Out of the points on the periphery of the circle, the potential is minimum at  

विकल्प

  • A

  • B

  • C

  • D

MCQ

उत्तर

A
The potential due to a charge decreases along the direction of electric field. As the electric field is along the positive x-axis, the potential will decrease in this direction. Therefore, the potential is minimum at point (a,0). 

shaalaa.com
Electric Field - Electric Field Due to a System of Charges
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Electric Field and Potential - Short Answers [पृष्ठ १२०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 7 Electric Field and Potential
Short Answers | Q 5 | पृष्ठ १२०

संबंधित प्रश्न

Consider a system of n charges q1, q2, ... qn with position vectors `vecr_1,vecr_2,vecr_3,...... vecr_n`relative to some origin 'O'. Deduce the expression for the net electric field`vec E` at a point P with position vector `vecr_p,`due to this system of charges.


The charge on a proton is +1.6 × 10−19 C and that on an electron is −1.6 × 10−19 C. Does it mean that the electron has 3.2 × 10−19 C less charge than the proton? 


Why does a phonograph record attract dust particles just after it is cleaned?


In some old texts it is mentioned that 4π lines of force originate from each unit positive charge. Comment on the statement in view of the fact that 4π is not an integer. 


A point charge q is rotated along a circle in an electric field generated by another point charge Q. The work done by the electric field on the rotating charge in one complete revolution is 


Which of the following quantities does not depend on the choice of zero potential or zero potential energy?


Consider a uniformly charged ring of radius R. Find the point on the axis where the electric field is maximum.

 

A particle of mass 1 g and charge 2.5 × 10−4 C is released from rest in an electric field of 1.2 × 10 4 N C−1. What will be the speed of the particle after travelling this distance? 


A ball of mass 100 g and with a charge of 4.9 × 10−5 C is released from rest in a region where a horizontal electric field of 2.0 × 104 N C−1 exists. (a) Find the resultant force acting on the ball. (b) What will be the path of the ball? (c) Where will the ball be at the end of 2 s?


12 J of work has to be done against an existing electric field to take a charge of 0.01 C from A to B. How much is the potential difference  VB − VA


An electric field of 20 NC−1 exists along the x-axis in space. Calculate the potential difference VB − VA where the points A and B are
(a) A = (0, 0); B = (4 m, 2m)
(b) A = (4 m, 2 m); B = (6 m, 5 m)
(c) A = (0, 0); B = (6 m, 5 m)
Do you find any relation between the answers of parts (a), (b) and (c)?  


The electric potential existing in space is \[\hspace{0.167em} V(x,   y,   z) = A(xy + yz + zx) .\] (a) Write the dimensional formula of A. (b) Find the expression for the electric field. (c) If A is 10 SI units, find the magnitude of the electric field at (1 m, 1 m, 1 m).


Find the magnitude of the electric field at the point P in the configuration shown in the figure for d >> a.


The surface charge density of a thin charged disc of radius R is σ. The value of the electric field at the center of the disc is `sigma/(2∈_0)`. With respect to the field at the center, the electric field along the axis at a distance R from the center of the disc ______.


Two identical blocks are kept on a frictionless horizontal table connected by a spring of stiffness k and of original length l0. A total charge Q is distributed on the block such that maximum elongation of spring at equilibrium is equal to x. Value of Q is ______.


In general, metallic ropes are suspended on the carriers taking inflammable materials. The reason is ______.


The Electric field at a point is ______.

  1. always continuous.
  2. continuous if there is no charge at that point.
  3. discontinuous only if there is a negative charge at that point.
  4. discontinuous if there is a charge at that point.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×