हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

If a Body is Charged by Rubbing It, Its Weight - Physics

Advertisements
Advertisements

प्रश्न

If a body is charged by rubbing it, its weight

विकल्प

  • remains precisely constant

  •  increases slightly

  • decreases slightly

  • may increase slightly or may decrease slightly

MCQ

उत्तर

 may increase slightly or may decrease slightly

If a body is rubbed with another body, it'll either gain some electrons from the other body and become negatively charged or it'll lose some electrons to the other body and become positively charged. Gain of electrons increases the weight of a body slightly and loss of electrons reduces the weight slightly.

shaalaa.com
Electric Field - Electric Field Due to a System of Charges
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Electric Field and Potential - Short Answers [पृष्ठ १२०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 7 Electric Field and Potential
Short Answers | Q 6 | पृष्ठ १२०

संबंधित प्रश्न

A hollow cylindrical box of length 1 m and area of cross-section 25 cm2 is placed in a three dimensional coordinate system as shown in the figure. The electric field in the region is given by `vecE = 50xhati` where E is NC­−1 and x is in metres. Find

(i) Net flux through the cylinder.

(ii) Charge enclosed by the cylinder.


A hollow cylindrical box of length 0.5 m and area of cross-section 25 cm2 is placed in a three dimensional coordinate system as shown in the figure. The electric field in the region is given by `vecE = 20 xhati`  where E is NC­−1 and x is in metres. Find

(i) Net flux through the cylinder.

(ii) Charge enclosed by the cylinder.


The charge on a proton is +1.6 × 10−19 C and that on an electron is −1.6 × 10−19 C. Does it mean that the electron has 3.2 × 10−19 C less charge than the proton? 


Why does a phonograph record attract dust particles just after it is cleaned?


In some old texts it is mentioned that 4π lines of force originate from each unit positive charge. Comment on the statement in view of the fact that 4π is not an integer. 


A point charge q is rotated along a circle in an electric field generated by another point charge Q. The work done by the electric field on the rotating charge in one complete revolution is 


The electric field and the electric potential at a point are E and V, respectively.  


Electric potential decreases uniformly from 120 V to 80 V, as one moves on the x-axis from x = −1 cm to x = +1 cm. The electric field at the origin 

(a) must be equal to 20 Vcm−1
(b) may be equal to 20 Vcm−1
(c) may be greater than 20 Vcm−1
(d) may be less than 20 Vcm−1 


Consider a uniformly charged ring of radius R. Find the point on the axis where the electric field is maximum.

 

A particle of mass 1 g and charge 2.5 × 10−4 C is released from rest in an electric field of 1.2 × 10 4 N C−1.   How long will it take for the particle to travel a distance of 40 cm?


A particle of mass 1 g and charge 2.5 × 10−4 C is released from rest in an electric field of 1.2 × 10 4 N C−1. How much is the work done by the electric force on the particle during this period?


12 J of work has to be done against an existing electric field to take a charge of 0.01 C from A to B. How much is the potential difference  VB − VA


Consider the situation of the previous problem. A charge of −2.0 × 10−4 C is moved from point A to point B. Find the change in electrical potential energy UB − UA for the cases (a), (b) and (c). 


An electric field  \[\vec{E}  =  \vec{i}\]  Ax exists in space, where A = 10 V m−2. Take the potential at (10 m, 20 m) to be zero. Find the potential at the origin.


The electric potential existing in space is \[\hspace{0.167em} V(x,   y,   z) = A(xy + yz + zx) .\] (a) Write the dimensional formula of A. (b) Find the expression for the electric field. (c) If A is 10 SI units, find the magnitude of the electric field at (1 m, 1 m, 1 m).


For distance far away from centre of dipole the change in magnitude of electric field with change in distance from the centre of dipole is ______.

Two identical blocks are kept on a frictionless horizontal table connected by a spring of stiffness k and of original length l0. A total charge Q is distributed on the block such that maximum elongation of spring at equilibrium is equal to x. Value of Q is ______.


In general, metallic ropes are suspended on the carriers taking inflammable materials. The reason is ______.


The Electric field at a point is ______.

  1. always continuous.
  2. continuous if there is no charge at that point.
  3. discontinuous only if there is a negative charge at that point.
  4. discontinuous if there is a charge at that point.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×