हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Particle of Mass 1 G and Charge 2.5 × 10−4 C is Released from Rest in an Electric Field of 1.2 × 10 4 N C−1. How Long Will It Take for the Particle to Travel a Distance of 40 Cm? - Physics

Advertisements
Advertisements

प्रश्न

A particle of mass 1 g and charge 2.5 × 10−4 C is released from rest in an electric field of 1.2 × 10 4 N C−1.   How long will it take for the particle to travel a distance of 40 cm?

टिप्पणी लिखिए

उत्तर

Given:
Charge of the particle, q = 2.5 × 10−4 C
Initial velocity, u = 0 
Electric field intensity, E = 1.2 × 104 N/C
Mass of the particle, m = 1 g = 10−3 kg
Distance travelled, s = 40 cm = 4 × 10−1 m

Acceleration of the particle, 

\[a = \frac{F_e}{m} = \frac{3}{{10}^{- 3}} = 3 \times  {10}^3  \text{ m/ s}^2\]

Let t be the time taken by the particle to cover the distance s = 40 cm. Then,

\[s = \frac{1}{2}a t^2 \] 

\[ \Rightarrow   t = \sqrt{\frac{2s}{a}} = 1 . 63 \times  {10}^{- 2}   s\] 

shaalaa.com
Electric Field - Electric Field Due to a System of Charges
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Electric Field and Potential - Exercises [पृष्ठ १२२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 7 Electric Field and Potential
Exercises | Q 48.2 | पृष्ठ १२२

संबंधित प्रश्न

An infinite line charge produces a field of 9 × 104 N/C at a distance of 2 cm. Calculate the linear charge density.


A hollow cylindrical box of length 1 m and area of cross-section 25 cm2 is placed in a three dimensional coordinate system as shown in the figure. The electric field in the region is given by `vecE = 50xhati` where E is NC­−1 and x is in metres. Find

(i) Net flux through the cylinder.

(ii) Charge enclosed by the cylinder.


The charge on a proton is +1.6 × 10−19 C and that on an electron is −1.6 × 10−19 C. Does it mean that the electron has 3.2 × 10−19 C less charge than the proton? 


In some old texts it is mentioned that 4π lines of force originate from each unit positive charge. Comment on the statement in view of the fact that 4π is not an integer. 


If a body is charged by rubbing it, its weight


A point charge q is rotated along a circle in an electric field generated by another point charge Q. The work done by the electric field on the rotating charge in one complete revolution is 


Electric potential decreases uniformly from 120 V to 80 V, as one moves on the x-axis from x = −1 cm to x = +1 cm. The electric field at the origin 

(a) must be equal to 20 Vcm−1
(b) may be equal to 20 Vcm−1
(c) may be greater than 20 Vcm−1
(d) may be less than 20 Vcm−1 


A 10-cm long rod carries a charge of +50 μC distributed uniformly along its length. Find the magnitude of the electric field at a point 10 cm from both ends of the rod.


Consider a uniformly charged ring of radius R. Find the point on the axis where the electric field is maximum.

 

A particle of mass m and charge q is thrown at a speed u against a uniform electric field E. How much distance will it travel before coming to momentary rest ? 


A particle of mass 1 g and charge 2.5 × 10−4 C is released from rest in an electric field of 1.2 × 10 4 N C−1. How much is the work done by the electric force on the particle during this period?


The electric potential existing in space is \[\hspace{0.167em} V(x,   y,   z) = A(xy + yz + zx) .\] (a) Write the dimensional formula of A. (b) Find the expression for the electric field. (c) If A is 10 SI units, find the magnitude of the electric field at (1 m, 1 m, 1 m).


A charged particle is free to move in an electric field. It will travel ______.

For distance far away from centre of dipole the change in magnitude of electric field with change in distance from the centre of dipole is ______.

Two identical blocks are kept on a frictionless horizontal table connected by a spring of stiffness k and of original length l0. A total charge Q is distributed on the block such that maximum elongation of spring at equilibrium is equal to x. Value of Q is ______.


The Electric field at a point is ______.

  1. always continuous.
  2. continuous if there is no charge at that point.
  3. discontinuous only if there is a negative charge at that point.
  4. discontinuous if there is a charge at that point.

Five charges, q each are placed at the corners of a regular pentagon of side ‘a’ (Figure).

(a) (i) What will be the electric field at O, the centre of the pentagon?

(ii) What will be the electric field at O if the charge from one of the corners (say A) is removed?

(iii) What will be the electric field at O if the charge q at A is replaced by –q?

(b) How would your answer to (a) be affected if pentagon is replaced by n-sided regular polygon with charge q at each of its corners?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×