हिंदी

The Following Figure Shows a Closed Victory-stand Whose Dimensions Are Given in Cm Find the Volume and the Surface Area of the Victory Stand. - Mathematics

Advertisements
Advertisements

प्रश्न

The following figure shows a closed victory-stand whose dimensions are given in cm.

Find the volume and the surface area of the victory stand. 

योग

उत्तर

Consider the box 1

Thus, the dimensions of box 1 are 60 cm, 40 cm, and 30 cm. 

Therefore, the volume of box 1 = 60 x 40 x 30 = 72000 cm
Surface area of box 1 = 2 ( lb + bh + lh )
Since the box is open at the bottom and from the given figure, we have,
Surface area of box 1 = 40 x 40 + 40 x 30 + 40 x 30 + 2 ( 60 x 30 )
                                  = 1600 + 1200 + 1200 + 3600
                                 = 7600 cm2   

Consider the box 2 

Thus, the dimensions of box 2 are 40 cm, 30 cm, and 30 cm.

Therefore, the volume of box 2 = 40 x 30 x 30 = 36000 cm
Surface area of box 2 = 2 ( lb + bh + lh )
Since the box is open at the bottom and from the given figure, we have,
Surface area of box 2 = 40 x 30 + 40 x 30  + 2 ( 30 x 30 )
                                  = 1200 + 1200 + 1800 
                                 = 4200 cm2   

Consider the box 3

Thus, the dimensions of the box 3 are 40 cm, 30 cm, and 20 cm.

Therefore, the volume of box 3 = 40 x 30 x 20 = 24000 cm
Surface area of box 3 = 2 ( lb + bh + lh )
Since the box is open at the bottom and from the given figure, we have,
Surface area of box 3 = 40 x 30 + 40 x 20  + 2 ( 30 x 20 )
                                  = 1200 + 800 + 1200 
                                 = 3200 cm2   

Total volume of the box
= volume of box 1 + volume of box 2 + volume of box 3
= 72000 + 36000 + 24000
= 132000 cm

Similarly, total surface area of the box
= surface area of box 1 + surface area  of box 2 + surface area of box 3
= 7600 + 4200 + 3200
= 15000 cm

shaalaa.com
Cross Section of Solid Shapes
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Solids [Surface Area and Volume of 3-D Solids] - Exercise 21 (B) [पृष्ठ २७३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 21 Solids [Surface Area and Volume of 3-D Solids]
Exercise 21 (B) | Q 10 | पृष्ठ २७३

संबंधित प्रश्न

The internal dimensions of a rectangular box are 12 cm x  `x` cm x 9 cm. If the length of the longest rod that can be placed in this box is 17 cm; find `x`.   


A rectangular field is 112 m long and 62 m broad. A cubical tank of edge 6 m is dug at each of the four corners of the field and the earth so removed is evenly spread on the remaining field. Find the rise in level.  


Find the length of a solid cylinder of diameter 4 cm when recast into a hollow cylinder of outer diameter 10 cm, thickness 0.25 cm and length 21 cm? Give your answer correct to two decimal places.


The cross section of a piece of metal 2 m in length
is shown. Calculate the volume of the piece of metal.


The given figure is a cross -section of a victory stand used in sports. All measurements are in centimetres. Assume all angles in the figure are right angles. If the width of the stand is 60 cm, find The space it occupies in cm3.


The given figure is a cross -section of a victory stand used in sports. All measurements are in centimetres. Assume all angles in the figure are right angles. If the width of the stand is 60 cm, find The total surface area in m2.


The figure shows the cross section of 0.2 m a concrete wall to be constructed. It is 0.2 m wide at the top, 2.0 m wide at the bottom and its height is 4.0 m, and its length is 40 m. Calculate the volume of the concrete in the wall


The cross section of a tunnel perpendicular to its length is a trapezium ABCD as shown in the figure. AM = BN; AB = 4.4 m, CD = 3 m The height of a tunnel is 2.4 m. The tunnel is 5.4 m long. Calculate the cost of flooring at the rate of Rs.2. 5 per m2.


ABCDE is the end view of a factory shed which is 50 m long. The roofing of the shed consists of asbestos sheets as shown in the figure. The two ends of the shed are completely closed by brick walls.
Find the total surface area (including roofing) of the shed.


A hose-pipe of cross section area 3 cm2 delivers 1800 liters of water in 10 minutes. Find the speed of water in km/h through the pipe.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×