हिंदी

The cross section of a piece of metal 2 m in length is shown. Calculate the volume of the piece of metal. - Mathematics

Advertisements
Advertisements

प्रश्न

The cross section of a piece of metal 2 m in length
is shown. Calculate the volume of the piece of metal.

योग

उत्तर


Length (height) of the metal
= 2m
= 200cm
Volume of the metal
= Area of cross-section x height
= 57 x 200
= 11400cm3
∴ Volume of the metal is 11400cm3.

shaalaa.com
Cross Section of Solid Shapes
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Surface Areas and Volume of Solids - Exercise 25.3

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 25 Surface Areas and Volume of Solids
Exercise 25.3 | Q 1.2

संबंधित प्रश्न

The following figure shows a solid of uniform cross-section. Find the volume of the solid. All measurements are in centimeters.

Assume that all angles in the figures are right angles.


A swimming pool is 40 m long and 15 m wide. Its shallow and deep ends are 1.5 m and 3 m deep respectively. If the bottom of the pool slopes uniformly, find the amount of water in liters required to fill the pool.


The following figure shows a closed victory-stand whose dimensions are given in cm.

Find the volume and the surface area of the victory stand. 


The cross-section of a piece of metal 4 m in length is shown below. Calculate :


(i) The area of the cross-section;
(ii) The volume of the piece of metal in cubic centimeters.

If 1 cubic centimeter of the metal weighs 6.6 g, calculate the weight of the piece of metal to the nearest kg.


A rectangular field is 112 m long and 62 m broad. A cubical tank of edge 6 m is dug at each of the four corners of the field and the earth so removed is evenly spread on the remaining field. Find the rise in level.  


Find the length of a solid cylinder of diameter 4 cm when recast into a hollow cylinder of outer diameter 10 cm, thickness 0.25 cm and length 21 cm? Give your answer correct to two decimal places.


The cross section of a piece of metal 2 m in length is shown. Calculate the area of cross section.


The cross section of a tunnel perpendicular to its length is a trapezium ABCD as shown in the figure. AM = BN; AB = 4.4 m, CD = 3 m The height of a tunnel is 2.4 m. The tunnel is 5.4 m long. Calculate the cost of painting the internal surface of the tunnel (excluding the floor) at the rate of Rs. 5 per m2.


ABCDE is the end view of a factory shed which is 50 m long. The roofing of the shed consists of asbestos sheets as shown in the figure. The two ends of the shed are completely closed by brick walls.
Find the total surface area (including roofing) of the shed.


A hose-pipe of cross section area 3 cm2 delivers 1800 liters of water in 10 minutes. Find the speed of water in km/h through the pipe.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×