हिंदी

The figure represents the cross section of a swimming pool 10 m broad, 2 m deep at one end, 3 m deep at the other end. Calculate the volume of water it will hold when full, - Mathematics

Advertisements
Advertisements

प्रश्न

The figure represents the cross section of a swimming pool 10 m broad, 2 m deep at one end, 3 m deep at the other end. Calculate the volume of water it will hold when full, given that its length is 40 m.

योग

उत्तर

The given figure is a trapezium because 2 opposite sides are parallel.

length of the pool = 40m

height of the trapezium = 10m

Area of cross section = Area of trapezium

= `(1)/(2) xx ("sum of parallel sides") xx "height"`

= `(1)/(2) xx (2 + 3) xx 10`

= 25m2

Volume of the pool = Area of cross section x length

= 25 x 40

= 1000m3

∴ The volume of the pool is 1000m3

shaalaa.com
Cross Section of Solid Shapes
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Surface Areas and Volume of Solids - Exercise 25.3

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 25 Surface Areas and Volume of Solids
Exercise 25.3 | Q 2

संबंधित प्रश्न

A swimming pool is 40 m long and 15 m wide. Its shallow and deep ends are 1.5 m and 3 m deep respectively. If the bottom of the pool slopes uniformly, find the amount of water in liters required to fill the pool.


A swimming pool is 18 m long and 8 m wide. Its deep and shallow ends are 2 m and 1.2 m respectively. Find the capacity of the pool, assuming that the bottom of the pool slopes uniformly. 


A rectangular cardboard sheet has length 32 cm and breadth 26 cm. Squares each of side 3 cm, are cut from the corners of the sheet and the sides are folded to make a rectangular container. Find the capacity of the container formed.


A rectangular water-tank measuring 80 cm x 60 cm is filled form a pipe of cross-sectional area 1.5 cm2, the water emerging at 3.2 m/s. How long does it take to fill the tank?


The cross-section of a tunnel perpendicular to its length is a trapezium ABCD as shown in the following figure; also given that:

AM = BN; AB = 7 m; CD = 5 m. The height of the tunnel is 2.4 m. The tunnel is 40 m long. Calculate:

(i) The cost of painting the internal surface of the tunnel (excluding the floor) at the rate of Rs. 5 per m2 (sq. meter).

(ii) The cost of paving the floor at the rate of Rs. 18 per m2.


A school auditorium is 40 m long, 30 m broad and 12 m high. If each student requires 1.2 m2 of the floor area; find the maximum number of students that can be accommodated in this auditorium. Also, find the volume of air available in the auditorium, for each student. 


The given figure is a cross -section of a victory stand used in sports. All measurements are in centimetres. Assume all angles in the figure are right angles. If the width of the stand is 60 cm, find The total surface area in m2.


The figure shows the cross section of 0.2 m a concrete wall to be constructed. It is 0.2 m wide at the top, 2.0 m wide at the bottom and its height is 4.0 m, and its length is 40 m. If the whole wall is to be painted, find the cost of painting it at 2.50 per sq m.


The cross section of a tunnel perpendicular to its length is a trapezium ABCD as shown in the figure. AM = BN; AB = 4.4 m, CD = 3 m The height of a tunnel is 2.4 m. The tunnel is 5.4 m long. Calculate the cost of painting the internal surface of the tunnel (excluding the floor) at the rate of Rs. 5 per m2.


ABCDE is the end view of a factory shed which is 50 m long. The roofing of the shed consists of asbestos sheets as shown in the figure. The two ends of the shed are completely closed by brick walls.


If the cost of asbestos sheet roofing is Rs. 20 per m2, find the cost of roofing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×