हिंदी

The Length of the Common Chord of Two Intersecting Circles is 30 Cm. If the Diameters of These Two Circles Are 50 Cm and 34 Cm, Calculate the Distance Between Their Centers. - Mathematics

Advertisements
Advertisements

प्रश्न

The length of the common chord of two intersecting circles is 30 cm. If the diameters of these two circles are 50 cm and 34 cm, calculate the distance between their centers.

योग

उत्तर


OA = 25 cm and AB = 30 cm

∴    AD = `1/2 xx "AB"  = (1/2 xx 30)` cm = 15 cm 

Now in right angled ADO
OA2 + AD2 + OD 
⇒  OD2 = OA2 - OD = 252 - 15
             = 625 - 225 = 400
∴ OD = `sqrt 400` = 20 cm
Again, we have  O'A = 17 cm.

In right-angle ADO'
O'A2 = A'D2 + O'D 
⇒  O'D2 = O'A2 - AD
= 172 - 15
= 289 - 225 = 64

∴ O'D = 8 cm
∴ OO' = ( OD + O'D )
          = ( 20 + 8 ) = 28 cm

∴ the distance between their centres is 28 cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Circle - Exercise 17 (B) [पृष्ठ २१७]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 17 Circle
Exercise 17 (B) | Q 7 | पृष्ठ २१७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×