हिंदी
सी.आई.एस.सी.ई.आईसीएसई ICSE Class 8

The Length of the Diagonals of a Rhombus is in Ratio 4 : 3. If Its Area is 384 Cm2, Find Its Side. - Mathematics

Advertisements
Advertisements

प्रश्न

The length of the diagonals of a rhombus is in ratio 4 : 3. If its area is 384 cm2, find its side.

योग

उत्तर

Let the lengths of the diagonals of a rhombus are 4x, 3x.

∴ Area of the rhombus = `1/2 xx ("Product of its diagonals")`

= `1/2 (4x xx 3x) = 384` (given)

⇒ `6x^2 = 384 ⇒ x^2 = 64`

⇒ x = 8 cm

∴ Diagonals are `4 xx 8 = 32` cm and `3(8) = 24` cm.

∴ OC = 16 cm and OD = 12 cm

∴ Side DC = `sqrt("OC"^2 + "OD"^2)`

∴ Side DC = `sqrt(16^2 + 12^2)`  [By Pythagoras Theorem in ΔDOC]

= `sqrt(256 + 144) = sqrt(400) = 20` cm

Hence , side of the rhombus = 20 cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Area of a Trapezium and a Polygon - Exercise 20 (C) [पृष्ठ २३२]

APPEARS IN

सेलिना Concise Mathematics [English] Class 8 ICSE
अध्याय 20 Area of a Trapezium and a Polygon
Exercise 20 (C) | Q 10 | पृष्ठ २३२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×