Advertisements
Advertisements
प्रश्न
The mean of the following distribution is 52 and the frequency of class interval 30-40 is ‘f’. Find ‘f’.
Class Interval | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency | 5 | 3 | f | 7 | 2 | 6 | 13 |
उत्तर
The mean of the distribution is frequency
C.I. | Frequency (f) |
Mid Value (x) |
fx |
10-20 | 5 | 15 | 75 |
20-30 | 3 | 25 | 75 |
30-40 | f | 35 | 35f |
40-50 | 7 | 45 | 315 |
50-60 | 2 | 55 | 110 |
60-70 | 6 | 65 | 390 |
70-80 | 13 | 75 | 975 |
`sumf = 36 + f` | `sum fx = 1940 + 35 f` |
Mean = `(sumfx)/(sumf)`
`=> 52 = (1940 + 35f)/(36 + f)`
`=>` 1872 + 52f = 1940 + 35f
`=>` 17f = 68
∴ f = 4
APPEARS IN
संबंधित प्रश्न
From the following cumulative frequency table, draw ogive and then use it to find:
- Median
- Lower quartile
- Upper quartile
Marks (less than) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Cumulative frequency | 5 | 24 | 37 | 40 | 42 | 48 | 70 | 77 | 79 | 80 |
The daily wages of 80 workers in a building project are given below :
Wages (Rs) | No.of workers |
30-40 | 6 |
40-50 | 10 |
50-60 | 15 |
60-70 | 19 |
70-80 | 12 |
80-90 | 8 |
90-100 | 6 |
100-110 | 4 |
Using graph paper, draw an ogive for the above distribution. Use your ogive, to estimate :
(1) the mediam wages of workers
(2) the percentage of workers who earn more than Rs 75 a day.
(3) the upper quartile wages of the workers
(4) the lower quartile wages of the workers
(5) Inter quartile range
Calculate the mean of the distribution, given below using the short cut method:
Marks | 11 – 20 | 21 – 30 | 31 – 40 | 41 – 50 | 51 – 60 | 61 – 70 | 71 – 80 |
No. of students | 2 | 6 | 10 | 12 | 9 | 7 | 4 |
Find the mean of the following frequency distribution :
Class | 1-10 | 11-20 | 21-30 | 31-40 | 41-50 |
Frequency | 9 | 12 | 15 | 10 | 14 |
The percentage marks obtained in 10 subjects by a student are 84, 88, 72, 91, 68, 75, 98, 96, 79 and 86. Find the median of the marks obtained.
Find the median of the following:
3x, x+5, x+7, x+9, x+11, x+13
Find the mean of first five prime numbers.
The mean of six numbers: x − 5, x − 1, x, x + 2, x + 4 and x + 12 is 15. Find the mean of first four numbers.
Find the median of 5, 7, 9, 11, 15, 17, 2, 23 and 19.
Find the median of 80, 48, 66, 61, 75, 52, 45 and 70