हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

The Moment of Inertia of a Uniform Rod of Mass 0⋅50 Kg and Length 1 M is 0⋅10 Kg-m2 About a Line Perpendicular to the Rod. Find the Distance of this Line from the Middle Point of the Rod. - Physics

Advertisements
Advertisements

प्रश्न

The moment of inertia of a uniform rod of mass 0⋅50 kg and length 1 m is 0⋅10 kg-m2about a line perpendicular to the rod. Find the distance of this line from the middle point of the rod.

योग

उत्तर

Given

Length of the rod, l = 1 m

Mass of the rod, m = 0.5 kg

Let the rod moves at a distance d from the centre.

On applying parallel axis theorem, we get

Moment of inertia about that axis,

\[I = \left( \frac{m l^2}{12} \right) + m d^2 = 0 . 10\]

\[I = \frac{0 . 5 \times l^2}{12} + 0 . 5 \times d^2 = 0 . 10\]

\[ \Rightarrow \frac{1}{12} + d^2 = 0 . 2\]

\[ \Rightarrow d^2 = 0 . 118\]

\[ \Rightarrow d = 0 . 342\text{ m from the centre}\]

shaalaa.com
Values of Moments of Inertia for Simple Geometrical Objects (No Derivation)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Rotational Mechanics - Exercise [पृष्ठ १९६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 10 Rotational Mechanics
Exercise | Q 12 | पृष्ठ १९६

संबंधित प्रश्न

If the ice at the poles melts and flows towards the equator, how will it affect the duration of day-night?


A hollow sphere, a solid sphere, a disc and a ring all having same mass and radius are rolled down on an inclined plane. If no slipping takes place, which one will take the smallest time to cover a given length?


A closed cylindrical tube containing some water (not filling the entire tube) lies in a horizontal plane. If the tube is rotated about a perpendicular bisector, the moment of inertia of water about the axis __________ .


The centre of a wheel rolling on a plane surface moves with a speed \[\nu_0\] A particle on the rim of the wheel at the same level as the centre will be moving at speed ___________ .


A solid sphere, a hollow sphere and a disc, all having same mass and radius, are placed at the top of a smooth incline and released. Least time will be taken in reaching the bottom by _________ .


In the previous question, the smallest kinetic energy at
the bottom of the incline will be achieved by ___________ .


Three particles, each of mass 200 g, are kept at the corners of an equilateral triangle of side 10 cm. Find the moment of inertial of the system about an axis joining two of the particles.


Three particles, each of mass 200 g, are kept at the corners of an equilateral triangle of side 10 cm. Find the moment of inertial of the system about an axis passing through one of the particles and perpendicular to the plane of the particles.


Particles of masses 1 g, 2 g, 3 g, .........., 100 g are kept at the marks 1 cm, 2 cm, 3 cm, ..........., 100 cm respectively on a metre scale. Find the moment of inertia of the system of particles about a perpendicular bisector of the metre scale.


Find the moment of inertia of a pair of spheres, each having a mass mass m and radius r, kept in contact about the tangent passing through the point of contact.


The surface density (mass/area) of a circular disc of radius a depends on the distance from the centre as [rholeft( r right) = A + Br.] Find its moment of inertia about the line perpendicular to the plane of the disc thorough its centre.


Because of the friction between the water in oceans with the earth's surface the rotational kinetic energy of the earth is continuously decreasing. If the earth's angular speed decreases by 0⋅0016 rad/day in 100 years find the average torque of the friction on the earth. Radius of the earth is 6400 km and its mass is 6⋅0 × 1024 kg.


The following figure shows two blocks of mass m and M connected by a string passing over a pulley. The horizontal table over which the mass m slides is smooth. The pulley has a radius r and moment of inertia I about its axis and it can freely rotate about this axis. Find the acceleration of the mass M assuming that the string does not slip on the pulley.


A metre stick weighing 240 g is pivoted at its upper end in such a way that it can freely rotate in a vertical place through this end (see the following figure). A particle of mass 100 g is attached to the upper end of the stick through a light string of length 1 m. Initially, the rod is kept vertical and the string horizontal when the system is released from rest. The particle collides with the lower end of the stick and sticks there. Find the maximum angle through which the stick will rise.


A sphere of mass m rolls on a plane surface. Find its kinetic energy at an instant when its centre moves with speed \[\nu.\]


A small spherical ball is released from a point at a height h on a rough track shown in the following figure. Assuming that it does not slip anywhere, find its linear speed when it rolls on the horizontal part of the track.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×