हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Small Spherical Ball is Released from a Point at a Height H on a Rough Track Shown in the Following Figure. - Physics

Advertisements
Advertisements

प्रश्न

A small spherical ball is released from a point at a height h on a rough track shown in the following figure. Assuming that it does not slip anywhere, find its linear speed when it rolls on the horizontal part of the track.

योग

उत्तर

Let r be the radius of the ball.

Let v be the linear speed of the ball when it rolls on the horizontal part of the track.

Let ω be the angular speed of the ball when it rolls on the horizontal part of the track.

Potential energy the ball has gained w.r.t. the surface will be converted to angular kinetic energy about the centre and linear kinetic energy.

Therefore, we have

\[mgh = \frac{1}{2}I \omega^2  + m v^2\]

\[\Rightarrow mgh = \frac{1}{2} \times \left( \frac{2}{5}m R^2 \right) \times  \left( \frac{v}{R} \right)^2  + \frac{1}{2}m v^2 \]

\[ \Rightarrow gh = \frac{1}{5} v^2  + \frac{1}{2} v^2 \]

\[ \Rightarrow  v^2  = \left( \frac{10}{7} \right)gh\]

\[ \Rightarrow v = \sqrt{\left( \frac{10gh}{7} \right)}\]

shaalaa.com
Values of Moments of Inertia for Simple Geometrical Objects (No Derivation)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Rotational Mechanics - Exercise [पृष्ठ २००]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 10 Rotational Mechanics
Exercise | Q 73 | पृष्ठ २००

संबंधित प्रश्न

If the ice at the poles melts and flows towards the equator, how will it affect the duration of day-night?


A circular disc A of radius r is made from an iron plate of thickness t and another circular disc B of radius 4r is made from an iron plate of thickness t/4. The relation between the moments of inertia IA and IB is __________ .


A thin circular ring of mass M and radius r is rotating about its axis with an angular speed ω. Two particles having mass m each are now attached at diametrically opposite points. The angular speed of the ring will become


The centre of a wheel rolling on a plane surface moves with a speed \[\nu_0\] A particle on the rim of the wheel at the same level as the centre will be moving at speed ___________ .


A wheel of radius 20 cm is pushed to move it on a rough horizontal surface. If is found to move through a distance of 60 cm on the road during the time it completes one revolution about the centre. Assume that the linear and the angular accelerations are uniform. The frictional force acting on the wheel by the surface is ______________________ .


A solid sphere, a hollow sphere and a disc, all having same mass and radius, are placed at the top of a smooth incline and released. Least time will be taken in reaching the bottom by _________ .


A solid sphere, a hollow sphere and a disc, all having same mass and radius, are placed at the top on an incline and released. The friction coefficients between the objects and the incline are same and not sufficient to allow pure rolling. Least time will be taken in reaching the bottom by ___________ .


In the previous question, the smallest kinetic energy at
the bottom of the incline will be achieved by ___________ .


A string of negligible thickness is wrapped several times around a cylinder kept on a rough horizontal surface. A man standing at a distance l from the cylinder holds one end of the string and pulls the cylinder towards him (see the following figure). There is no slipping anywhere. The length of the string passed through the hand of the man while the cylinder reaches his hands is _________ .


Consider a wheel of a bicycle rolling on a level road at a linear speed \[\nu_0\] (see the following figure)

(a) the speed of the particle A is zero

(b) the speed of B, C and D are all equal to \[v_0\]

(c) the speed of C is 2 \[v_0\]

(d) the speed of B is greater than the speed of O.


Find the moment of inertia of a pair of spheres, each having a mass mass m and radius r, kept in contact about the tangent passing through the point of contact.


The moment of inertia of a uniform rod of mass 0⋅50 kg and length 1 m is 0⋅10 kg-m2about a line perpendicular to the rod. Find the distance of this line from the middle point of the rod.


The surface density (mass/area) of a circular disc of radius a depends on the distance from the centre as [rholeft( r right) = A + Br.] Find its moment of inertia about the line perpendicular to the plane of the disc thorough its centre.


Because of the friction between the water in oceans with the earth's surface the rotational kinetic energy of the earth is continuously decreasing. If the earth's angular speed decreases by 0⋅0016 rad/day in 100 years find the average torque of the friction on the earth. Radius of the earth is 6400 km and its mass is 6⋅0 × 1024 kg.


Suppose the rod in the previous problem has a mass of 1 kg distributed uniformly over its length.

(a) Find the initial angular acceleration of the rod.

(b) Find the tension in the supports to the blocks of mass 2 kg and 5 kg.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×