हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Small Disc is Set Rolling with a Speed ν on the Horizontal Part of the Track of the Previous Problem from Right to Left. to What Height Will It Climb up the Curved Part? - Physics

Advertisements
Advertisements

प्रश्न

A small disc is set rolling with a speed \[\nu\] on the horizontal part of the track of the previous problem from right to left. To what height will it climb up the curved part?

योग

उत्तर

Let the radius of the disc be R.

Let the angular velocity of the disc ω.

Let the height attained by the disc be h.

On applying the law of conservation of energy, we get

\[\frac{1}{2}m v^2  + \frac{1}{2}I \omega^2  = mgh\]

\[ \Rightarrow \frac{1}{2}m v^2  + \frac{1}{2} \times \frac{1}{2}m R^2  \times  \left( \frac{v}{R} \right)^2  = mgh\]

\[ \Rightarrow \frac{1}{2} v^2  + \frac{1}{4} v^2  = gh\]

\[ \Rightarrow \frac{3}{4} v^2  = gh\]

\[ \Rightarrow h = \frac{3 v^2}{4g}\]

shaalaa.com
Momentum Conservation and Centre of Mass Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Rotational Mechanics - Exercise [पृष्ठ २००]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 10 Rotational Mechanics
Exercise | Q 74 | पृष्ठ २००

संबंधित प्रश्न

Two bodies make an elastic head-on collision on a smooth horizontal table kept in a car. Do you expect a change in the result if the car is accelerated in a horizontal road because of the non inertial character of the frame? Does the equation "Velocity of separation = Velocity of approach" remain valid in an accelerating car? Does the equation "final momentum = initial momentum" remain valid in the accelerating car?


If the total mechanical energy of a particle is zero, is its linear momentum necessarily zero? Is it necessarily nonzero?


Suppose we define a quantity 'Linear momentum' as linear momentum = mass × speed.
The linear momentum of a system of particles is the sum of linear momenta of the individual particles. Can we state principle of conservation of linear momentum as "linear momentum of a system remains constant if no external force acts on it"?


Use the definition of linear momentum from the previous question. Can we state the principle of conservation of linear momentum for a single particle?


When a nucleus at rest emits a beta particle, it is found that the velocities of the recoiling nucleus and the beta particle are not along the same straight line. How can this be possible in view of the principle of conservation of momentum?


A van is standing on a frictionless portion of a horizontal road. To start the engine, the vehicle must be set in motion in the forward direction. How can be persons sitting inside the van do it without coming out and pushing from behind?


In one-dimensional elastic collision of equal masses, the velocities are interchanged. Can velocities in a one-dimensional collision be interchanged if the masses are not equal?


Consider the following two statements:

(A) Linear momentum of a system of particles is zero.

(B) Kinetic energy of a system of particles is zero.


A nucleus moving with a velocity \[\vec{v}\] emits an α-particle. Let the velocities of the α-particle and the remaining nucleus be v1 and v2 and their masses be m1 and m2


A block moving in air breaks in two parts and the parts separate
(a) the total momentum must be conserved
(b) the total kinetic energy must be conserved
(c) the total momentum must change
(d) the total kinetic energy must change


In an elastic collision
(a) the kinetic energy remains constant
(b) the linear momentum remains constant
(c) the final kinetic energy is equal to the initial kinetic energy
(d) the final linear momentum is equal to the initial linear momentum.


A man of mass M having a bag of mass m slips from the roof of a tall building of height H and starts falling vertically in the following figure. When at a height h from the ground, the notices that the ground below him is pretty hard, but there is a pond at a horizontal  distance x from the line of fall. In order to save himself he throws the bag horizontally (with respect to himself) in the direction opposite to the pond. Calculate the minimum horizontal velocity imparted to the bag so that the man lands in the water. If the man just succeeds to avoid the hard ground, where will the bag land?


A ball of mass m moving at a speed v makes a head-on collision with an identical ball at rest. The kinetic energy of the balls after the collision is three fourths of the original. Find the coefficient of restitution.  


A block of mass 2.0 kg is moving on a frictionless horizontal surface with a velocity of 1.0 m/s (In the following figure) towards another block of equal mass kept at rest. The spring constant of the spring fixed at one end is 100 N/m. Find the maximum compression of the spring.


A block of mass 200 g is suspended through a vertical spring. The spring is stretched by 1.0 cm when the block is in equilibrium. A particle of mass 120 g is dropped on the block from a height of 45 cm. The particle sticks to the block after the impact. Find the maximum extension of the spring. Take g = 10 m/s2.


A uniform rod pivoted at its upper end hangs vertically. It is displaced through an angle of 60° and then released. Find the magnitude of the force acting on a particle of mass dm at the tip of the rod when the rod makes an angle of 37° with the vertical.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×