हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A man of mass M having a bag of mass m slips from the roof of a tall building of height H and starts falling vertically. When at a height h from the ground, the notices that the ground below - Physics

Advertisements
Advertisements

प्रश्न

A man of mass M having a bag of mass m slips from the roof of a tall building of height H and starts falling vertically in the following figure. When at a height h from the ground, the notices that the ground below him is pretty hard, but there is a pond at a horizontal  distance x from the line of fall. In order to save himself he throws the bag horizontally (with respect to himself) in the direction opposite to the pond. Calculate the minimum horizontal velocity imparted to the bag so that the man lands in the water. If the man just succeeds to avoid the hard ground, where will the bag land?

योग

उत्तर

Mass of man = M
Initial velocity of the man = 0
Mass of bag = m 

Let the man throws the bag towards left with a velocity v and himself moves towards right with a velocity V.

Using the law of conservation of momentum,
\[mv = MV\]
\[ \Rightarrow v = \frac{MV}{m} . . . (1)\]
\[\text{ Let the total time he takes to reach ground be t_1 . }\]
\[ \Rightarrow t_1 = \sqrt{\frac{2H}{g}}\]
\[\text{ Let the total time he takes to reach the height h be t_2 .} \]
\[ \Rightarrow t_2 = \sqrt{\frac{2(H - h)}{g}}\]
\[ \therefore \text{ The time of flying in covering the remaining height h is,} \]
\[ t = t_1 - t_2 \]
\[ \Rightarrow t = \sqrt{\frac{2H}{g}} - \sqrt{\frac{2(H - h)}{g}}\]
\[ = \sqrt{\frac{2}{g}}\left( \sqrt{H} - \sqrt{H - h} \right)\]

During this time, the man covers a horizontal distance x and lands in the water.
\[\Rightarrow x = V \times t\]
\[ \Rightarrow V = \frac{x}{t}\]
\[ \therefore v = \frac{M}{m}\frac{x}{t} \left[ \text{ using equation } \left( 1 \right) \right]\]
\[ = \frac{M}{m}\frac{x}{\sqrt{\frac{2}{g}}\left( \sqrt{H} - \sqrt{H - h} \right)}\]
Thus, the minimum horizontal velocity imparted to the bag, such that the man lands in the water is

\[\frac{M}{m}\frac{x}{\sqrt{\frac{2}{g}}\left( \sqrt{H} - \sqrt{H - h} \right)}\]
Let the bag lands at a distance x' towards left from actual line of fall.
As there is no external force in horizontal direction, the x-coordinate of the centre of mass will remain same.
\[\Rightarrow 0 = \frac{M \times (x) + m \times x'}{M + m}\]
\[ \Rightarrow x' = - \frac{M}{m}x\]
Therefore, the bag will land at a distance 
\[\frac{M}{m}x\]

shaalaa.com
Momentum Conservation and Centre of Mass Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Centre of Mass, Linear Momentum, Collision - Exercise [पृष्ठ १६१]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 9 Centre of Mass, Linear Momentum, Collision
Exercise | Q 19 | पृष्ठ १६१

संबंधित प्रश्न

A bob suspended from the ceiling of a car which is accelerating on a horizontal road. The bob stays at rest with respect to the car with the string making an angle θ with the vertical. The linear momentum of the bob as seen from the road is increasing with time. Is it a violation of conservation of linear momentum? If not, where is the external force changes the linear momentum?


Consider the situation of the previous problem. Take "the table plus the ball" as the system. friction between the table and the ball is then an internal force. As the ball slows down, the momentum of the system decreases. Which external force is responsible for this change in the momentum?


When a nucleus at rest emits a beta particle, it is found that the velocities of the recoiling nucleus and the beta particle are not along the same straight line. How can this be possible in view of the principle of conservation of momentum?


Consider the following two statements:

(A)  The linear momentum of a particle is independent of the frame of reference.

(B) The kinetic energy of a particle is independent of the frame of reference.


Internal forces can change


The quantities remaining constant in a collisions are


A nucleus moving with a velocity \[\vec{v}\] emits an α-particle. Let the velocities of the α-particle and the remaining nucleus be v1 and v2 and their masses be m1 and m2


A block moving in air breaks in two parts and the parts separate
(a) the total momentum must be conserved
(b) the total kinetic energy must be conserved
(c) the total momentum must change
(d) the total kinetic energy must change


A ball hits a floor and rebounds after an inelastic collision. In this case
(a) the momentum of the ball just after the collision is same as that just before the collision
(b) the mechanical energy of the ball remains the same during the collision
(c) the total momentum of the ball and the earth is conserved
(d) the total energy of the ball and the earth remains the same


A man of mass 50 kg starts moving on the earth and acquires a speed 1.8 m/s. With what speed does the earth recoil? Mass of earth = 6 × 1024 kg.


A ball of mass 0.50 kg moving at a speed of 5.0 m/s collides with another ball of mass 1.0 kg. After the collision the balls stick together and remain  motionless. What was the velocity of the 1.0 kg block before the collision?


Consider a head-on collision between two particles of masses m1 and m2. The initial speeds of the particles are u1 and u2 in the same direction. the collision starts at t = 0 and the particles interact for a time interval ∆t. During the collision, the speed of the first particle varies as \[v(t) = u_1 + \frac{t}{∆ t}( v_1 - u_1 )\]
Find the speed of the second particle as a function of time during the collision. 


A block of mass 2.0 kg is moving on a frictionless horizontal surface with a velocity of 1.0 m/s (In the following figure) towards another block of equal mass kept at rest. The spring constant of the spring fixed at one end is 100 N/m. Find the maximum compression of the spring.


A bullet of mass 10 g moving horizontally at a speed of 50√7 m/s strikes a block of mass 490 g kept on a frictionless track as shown in figure. The bullet remains inside the block and the system proceeds towards the semicircular track of radius 0.2 m. Where will the block strike the horizontal part after leaving the semicircular track?


The blocks shown in figure have equal masses. The surface of A is smooth but that of Bhas a friction coefficient of 0.10 with the floor. Block A is moving at a speed of 10 m/s towards B which is kept at rest. Find the distance travelled by B if (a) the collision is perfectly elastic and (b) the collision is perfectly inelastic. 


A small block of superdense material has a mass of 3 × 1024kg. It is situated at a height h (much smaller than the earth's radius) from where it falls on the earth's surface. Find its speed when its height from the earth's surface has reduce to to h/2. The mass of the earth is 6 × 1024kg.


A metre stick is held vertically with one end on a rough horizontal floor. It is gently allowed to fall on the floor. Assuming that the end at the floor does not slip, find the angular speed of the rod when it hits the floor.


A solid sphere of mass m is released from rest from the rim of a hemispherical cup so that it rolls along the surface. If the rim of the hemisphere is kept horizontal, find the normal force exerted by the cup on the ball when the ball reaches the bottom of the cup.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×