हिंदी

The radius of a circular track is 200 m. Find the angle of banking of the track, if the maximum speed at which a car can be driven safely along it is 25 m/sec. - Physics

Advertisements
Advertisements

प्रश्न

The radius of a circular track is 200 m. Find the angle of banking of the track, if the maximum speed at which a car can be driven safely along it is 25 m/sec.

संख्यात्मक

उत्तर

Given:

v = 25 m/s,

r = 200 m,

g = 9.8 m/s2

To find:

Angle of banking (θ) = ?

Formula:

`tan theta = (v_max^2)/(rg)`

∴ `tan theta = ((25^2))/(200 xx 9.8)`

∴ `tan theta = 625/1290`

∴ `tan theta = 0.3189`

∴ θ = tan−1 (0.3189)

∴ θ = 17°41'

Therefore, the angle of banking of the track should be approximately 17°41' to allow a car to be driven safely along it at a maximum speed of 25 m/s.

shaalaa.com
Applications of Uniform Circular Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (March) Official

संबंधित प्रश्न

Answer in Brief:

Part of a racing track is to be designed for curvature of 72m. We are not recommending the vehicles to drive faster than 216 kmph. With what angle should the road be tilted? By what height will its outer edge be, with respect to the inner edge if the track is 10 m wide?


A road is constructed as per the given requirements. The coefficient of static friction between the tyres of a vehicle on this road is 0.8, will there be any lower speed limit? By how much can the upper speed limit exceed in this case?

(Given: r = 72 m, vo = 216 km/h, w = 10 m, θ = 78°4', h = 9.805 m)


A metallic ring of mass 1 kg has a moment of inertia 1 kg m2 when rotating about one of its diameters. It is molten and remolded into a thin uniform disc of the same radius. How much will its moment of inertia be, when rotated about its own axis.


Using energy conservation, along a vertical circular motion controlled by gravity, prove that the difference between the extreme tensions (or normal forces) depends only upon the weight of the objects.


For a body moving with constant speed in a horizontal circle, which of the following remains constant?


A cyclist with combined mass 80 kg goes around a curved road with a uniform speed 20 m/s. He has to bend inward by an angle `theta` = tan-1 (0.50) with the vertical. The force of friction acting at the point of contact of tyres and road surface is______.

[g = 10 m/s2 ]


The maximum safe speed, for which a banked road is intended, is to be increased by 20 %. If the angle of banking is not changed, then the radius of curvature of the road should be changed from 30 m to ____________.


A horizontal circular platform of mass 100 kg is rotating at 5 r.p.m. about vertical axis passing through its centre. A child of mass 20 kg is standing on the edge of platform. If the child comes to the centre of platform then the frequency of rotation will become ______.


In the case of conical pendulum, if T is the tension in the string and θ is the semivertical angle of cone, then the component of tension which balances the centrifugal force in equilibrium position is ______.


A motorcyclist rides in a horizontal circle about central vertical axis inside a cylindrical chamber of radius 'r'. If the coefficient of friction between the tyres and the inner surface of chamber is 'µ', the minimum speed of motorcyclist to prevent him from skidding is ______.

('g' =acceleration due to gravity)


A particle moves along a circular path of radius 'r' with uniform speed 'V'. The angle described by the particle in one second is ______.


In the case of conical pendulum, if 'T' is the tension in the string and 'θ' is the semi-vertical angle of cone, then the component which provides necessary centripetal force is ______.


A flat curved road on highway has radius of curvature 400 m. A car rounds the curve at a speed of 24 m/s. The minimum value of coefficient of friction to prevent car from sliding is ______.

(take g = 10 m/s2)


A particle rotates in horizontal circle of radius 'R' in a conical funnel, with speed 'V'. The inner surface of the funnel is smooth. The height of the plane of the circle from the vertex of the funnel is ______.

(g = acceleration due to gravity)


The two blocks, m = 10 kg and M = 50kg are free to move as shown. The coefficient of static friction between the blocks is 0.5 and there is no friction between M and the ground. A minimum horizontal force F is applied to hold m against M that is equal to ______.


If friction is made zero for a road, can a vehicle move safely on this road?


Why it is necessary banking of a road?


A curved road 5 m wide is to be designed with a radius of curvature 900 m. What should be the elevation of the outer edge of the road above the inner edge optimum speed of the vehicles rounding the curve is 30 m/s.


Write about the kinetic friction between the road and the tyres.


The radius of curvature of road is 60 m. If angle of banking is 27°, find maximum speed with which vehicle can tum along this curve. . (g = 9.8 m/s2)


A body performing uniform circular motion has ______.


A horizontal force of 0.5 N is required to move a metal plate of area 10−2 m2 with a velocity of 3 × 102m/s, when it rests on 0.5 × 103 m thick layer of glycerin. Find the coefficient of viscosity of glycerin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×