Advertisements
Advertisements
प्रश्न
A horizontal force of 0.5 N is required to move a metal plate of area 10−2 m2 with a velocity of 3 × 10−2m/s, when it rests on 0.5 × 10−3 m thick layer of glycerin. Find the coefficient of viscosity of glycerin.
उत्तर
Given:
F = 0.5 N = 5 × 10−1
A = 10−2 m2,
dv = 3 × 10−2 m/s
dx = 0.5 × 10−3 m = 5 × 10−4 m
To find:
The coefficient of viscosity of glycerin (η) = ?
Formula:
`eta = F/(A(dv)/(dx))`
= `(5 xx 10^-1)/(10^-2 xx ((3 xx 10^-2)/(5 xx 10^-4))`
= `(5 xx 10^-1)/10^-2 xx (5 xx 10^-4)/(3 xx 10^-2)`
= `25/3 xx 10^-1`
= 8.33 × 10−1
∴ η = 0.833 Ns/m2
APPEARS IN
संबंधित प्रश्न
Answer in brief:
A uniform disc and a hollow right circular cone have the same formula for their M.I. when rotating about their central axes. Why is it so?
A road is constructed as per the given requirements. The coefficient of static friction between the tyres of a vehicle on this road is 0.8, will there be any lower speed limit? By how much can the upper speed limit exceed in this case?
(Given: r = 72 m, vo = 216 km/h, w = 10 m, θ = 78°4', h = 9.805 m)
A vehicle of mass m is moving with momentum p on a rough horizontal road. The coefficient of friction between the tyres and the horizontal road is µ. The stopping distance is ____________.
(g = acceleration due to gravity)
A cyclist with combined mass 80 kg goes around a curved road with a uniform speed 20 m/s. He has to bend inward by an angle `theta` = tan-1 (0.50) with the vertical. The force of friction acting at the point of contact of tyres and road surface is______.
[g = 10 m/s2 ]
A horizontal circular platform of mass 100 kg is rotating at 5 r.p.m. about vertical axis passing through its centre. A child of mass 20 kg is standing on the edge of platform. If the child comes to the centre of platform then the frequency of rotation will become ______.
A car moves at a speed of 36 km hr-1 on a level road. The coefficient of friction between the tyres and the road is 0.8. The car negotiates a curve of radius R. If g = 10 ms-2 , then the car will skid (or slip) while negotiating the curve, if the value of R is ____________.
A body of mass 10 kg is attached to a wire 0.3 m long. Its breaking stress is 4.8 × 107 N/m2. The area of cross-section of the wire is 10-6m2. The maximum angular velocity with which it can be rotated 111 a horizontal circle is ______.
In the case of conical pendulum, if T is the tension in the string and θ is the semivertical angle of cone, then the component of tension which balances the centrifugal force in equilibrium position is ______.
A particle moves along a circular path of radius 'r' with uniform speed 'V'. The angle described by the particle in one second is ______.
In the case of conical pendulum, if 'T' is the tension in the string and 'θ' is the semi-vertical angle of cone, then the component which provides necessary centripetal force is ______.
A flat curved road on highway has radius of curvature 400 m. A car rounds the curve at a speed of 24 m/s. The minimum value of coefficient of friction to prevent car from sliding is ______.
(take g = 10 m/s2)
A particle rotates in horizontal circle of radius 'R' in a conical funnel, with speed 'V'. The inner surface of the funnel is smooth. The height of the plane of the circle from the vertex of the funnel is ______.
(g = acceleration due to gravity)
A particle executes uniform circular motion with angular momentum 'L'. Its rotational kinetic energy becomes half when the angular frequency is doubled. Its new angular momentum is ______.
The two blocks, m = 10 kg and M = 50kg are free to move as shown. The coefficient of static friction between the blocks is 0.5 and there is no friction between M and the ground. A minimum horizontal force F is applied to hold m against M that is equal to ______.
If friction is made zero for a road, can a vehicle move safely on this road?
What is banking of a road?
The centripetal acceleration of the bob of a conical pendulum is, in the usual notation, ______.
A cyclist is undertaking horizontal circles inside a cylindrical well of radius 5 m. If the friction coefficient is 0.5, what should be the minimum speed of the cyclist?
A string of length 0.5 m carries a bob of mass 0.1 kg at its end. If this is to be used as a conical pendulum of period 0.4 π sec, the angle of inclination of the string with the vertical is ______. (g = 10m/s2)
The radius of curvature of road is 60 m. If angle of banking is 27°, find maximum speed with which vehicle can tum along this curve. . (g = 9.8 m/s2)
Why does a motorcyclist moving along a level curve at high speed have to lean more than a cyclist moving along the same curve at low speed?
The radius of a circular track is 200 m. Find the angle of banking of the track, if the maximum speed at which a car can be driven safely along it is 25 m/sec.