हिंदी

A horizontal force of 0.5 N is required to move a metal plate of area 10−2 m2 with a velocity of 3 × 10−2m/s, when it rests on 0.5 × 10−3 m thick layer of glycerin. Find the coefficient of viscosity - Physics

Advertisements
Advertisements

प्रश्न

A horizontal force of 0.5 N is required to move a metal plate of area 10−2 m2 with a velocity of 3 × 102m/s, when it rests on 0.5 × 103 m thick layer of glycerin. Find the coefficient of viscosity of glycerin.

संख्यात्मक

उत्तर

Given:

F = 0.5 N = 5 × 10−1

A = 10−2 m2,

dv = 3 × 102 m/s
dx = 0.5 × 103 m = 5 × 10−4 m

To find:

The coefficient of viscosity of glycerin (η) = ?

Formula:

`eta = F/(A(dv)/(dx))`

= `(5 xx 10^-1)/(10^-2 xx ((3 xx 10^-2)/(5 xx 10^-4))`

= `(5 xx 10^-1)/10^-2 xx (5 xx 10^-4)/(3 xx 10^-2)`

= `25/3 xx 10^-1`

= 8.33 × 10−1

∴ η = 0.833 Ns/m2

shaalaa.com
Applications of Uniform Circular Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (March) Official

संबंधित प्रश्न

Answer in brief:

A uniform disc and a hollow right circular cone have the same formula for their M.I. when rotating about their central axes. Why is it so?


A road is constructed as per the given requirements. The coefficient of static friction between the tyres of a vehicle on this road is 0.8, will there be any lower speed limit? By how much can the upper speed limit exceed in this case?

(Given: r = 72 m, vo = 216 km/h, w = 10 m, θ = 78°4', h = 9.805 m)


A vehicle of mass m is moving with momentum p on a rough horizontal road. The coefficient of friction between the tyres and the horizontal road is µ. The stopping distance is ____________.

(g = acceleration due to gravity)


A cyclist with combined mass 80 kg goes around a curved road with a uniform speed 20 m/s. He has to bend inward by an angle `theta` = tan-1 (0.50) with the vertical. The force of friction acting at the point of contact of tyres and road surface is______.

[g = 10 m/s2 ]


A horizontal circular platform of mass 100 kg is rotating at 5 r.p.m. about vertical axis passing through its centre. A child of mass 20 kg is standing on the edge of platform. If the child comes to the centre of platform then the frequency of rotation will become ______.


A car moves at a speed of 36 km hr-1 on a level road. The coefficient of friction between the tyres and the road is 0.8. The car negotiates a curve of radius R. If g = 10 ms-2 , then the car will skid (or slip) while negotiating the curve, if the value of R is ____________.


A body of mass 10 kg is attached to a wire 0.3 m long. Its breaking stress is 4.8 × 10N/m2. The area of cross-section of the wire is 10-6m2. The maximum angular velocity with which it can be rotated 111 a horizontal circle is ______.


In the case of conical pendulum, if T is the tension in the string and θ is the semivertical angle of cone, then the component of tension which balances the centrifugal force in equilibrium position is ______.


A particle moves along a circular path of radius 'r' with uniform speed 'V'. The angle described by the particle in one second is ______.


In the case of conical pendulum, if 'T' is the tension in the string and 'θ' is the semi-vertical angle of cone, then the component which provides necessary centripetal force is ______.


A flat curved road on highway has radius of curvature 400 m. A car rounds the curve at a speed of 24 m/s. The minimum value of coefficient of friction to prevent car from sliding is ______.

(take g = 10 m/s2)


A particle rotates in horizontal circle of radius 'R' in a conical funnel, with speed 'V'. The inner surface of the funnel is smooth. The height of the plane of the circle from the vertex of the funnel is ______.

(g = acceleration due to gravity)


A particle executes uniform circular motion with angular momentum 'L'. Its rotational kinetic energy becomes half when the angular frequency is doubled. Its new angular momentum is ______.


The two blocks, m = 10 kg and M = 50kg are free to move as shown. The coefficient of static friction between the blocks is 0.5 and there is no friction between M and the ground. A minimum horizontal force F is applied to hold m against M that is equal to ______.


If friction is made zero for a road, can a vehicle move safely on this road?


What is banking of a road? 


The centripetal acceleration of the bob of a conical pendulum is, in the usual notation, ______.


A cyclist is undertaking horizontal circles inside a cylindrical well of radius 5 m. If the friction coefficient is 0.5, what should be the minimum speed of the cyclist?


A string of length 0.5 m carries a bob of mass 0.1 kg at its end. If this is to be used as a conical pendulum of period 0.4 π sec, the angle of inclination of the string with the vertical is ______. (g = 10m/s2)


The radius of curvature of road is 60 m. If angle of banking is 27°, find maximum speed with which vehicle can tum along this curve. . (g = 9.8 m/s2)


Why does a motorcyclist moving along a level curve at high speed have to lean more than a cyclist moving along the same curve at low speed?


The radius of a circular track is 200 m. Find the angle of banking of the track, if the maximum speed at which a car can be driven safely along it is 25 m/sec.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×