Advertisements
Advertisements
Question
A horizontal force of 0.5 N is required to move a metal plate of area 10−2 m2 with a velocity of 3 × 10−2m/s, when it rests on 0.5 × 10−3 m thick layer of glycerin. Find the coefficient of viscosity of glycerin.
Solution
Given:
F = 0.5 N = 5 × 10−1
A = 10−2 m2,
dv = 3 × 10−2 m/s
dx = 0.5 × 10−3 m = 5 × 10−4 m
To find:
The coefficient of viscosity of glycerin (η) = ?
Formula:
`eta = F/(A(dv)/(dx))`
= `(5 xx 10^-1)/(10^-2 xx ((3 xx 10^-2)/(5 xx 10^-4))`
= `(5 xx 10^-1)/10^-2 xx (5 xx 10^-4)/(3 xx 10^-2)`
= `25/3 xx 10^-1`
= 8.33 × 10−1
∴ η = 0.833 Ns/m2
APPEARS IN
RELATED QUESTIONS
Answer in brief:
A uniform disc and a hollow right circular cone have the same formula for their M.I. when rotating about their central axes. Why is it so?
Answer in Brief:
Part of a racing track is to be designed for curvature of 72m. We are not recommending the vehicles to drive faster than 216 kmph. With what angle should the road be tilted? By what height will its outer edge be, with respect to the inner edge if the track is 10 m wide?
During a stunt, a cyclist (considered to be a particle) is undertaking horizontal circles inside a cylindrical well of radius 6.05 m. If the necessary friction coefficient is 0.5, how much minimum speed should the stunt artist maintain? The mass of the artist is 50 kg. If she/he increases the speed by 20%, how much will the force of friction be?
Using the energy conservation, derive the expressions for the minimum speeds at different locations along a vertical circular motion controlled by gravity. Is zero speed possible at the uppermost point? Under what condition/s?
Using energy conservation, along a vertical circular motion controlled by gravity, prove that the difference between the extreme tensions (or normal forces) depends only upon the weight of the objects.
A block of mass m is moving on rough horizontal surface with momentum p. The coefficient of friction between the block and surface is µ. The distance covered by the block before it stops is [g =acceleration due to gravity)
The maximum safe speed, for which a banked road is intended, is to be increased by 20 %. If the angle of banking is not changed, then the radius of curvature of the road should be changed from 30 m to ____________.
A horizontal circular platform of mass 100 kg is rotating at 5 r.p.m. about vertical axis passing through its centre. A child of mass 20 kg is standing on the edge of platform. If the child comes to the centre of platform then the frequency of rotation will become ______.
A car moves at a speed of 36 km hr-1 on a level road. The coefficient of friction between the tyres and the road is 0.8. The car negotiates a curve of radius R. If g = 10 ms-2 , then the car will skid (or slip) while negotiating the curve, if the value of R is ____________.
In the case of conical pendulum, if T is the tension in the string and θ is the semivertical angle of cone, then the component of tension which balances the centrifugal force in equilibrium position is ______.
A particle moves along a circular path of radius 'r' with uniform speed 'V'. The angle described by the particle in one second is ______.
The two blocks, m = 10 kg and M = 50kg are free to move as shown. The coefficient of static friction between the blocks is 0.5 and there is no friction between M and the ground. A minimum horizontal force F is applied to hold m against M that is equal to ______.
If friction is made zero for a road, can a vehicle move safely on this road?
What is banking of a road?
Why it is necessary banking of a road?
A curved road 5 m wide is to be designed with a radius of curvature 900 m. What should be the elevation of the outer edge of the road above the inner edge optimum speed of the vehicles rounding the curve is 30 m/s.
A string of length 0.5 m carries a bob of mass 0.1 kg at its end. If this is to be used as a conical pendulum of period 0.4 π sec, the angle of inclination of the string with the vertical is ______. (g = 10m/s2)
Write about the kinetic friction between the road and the tyres.
The radius of curvature of road is 60 m. If angle of banking is 27°, find maximum speed with which vehicle can tum along this curve. . (g = 9.8 m/s2)
A body performing uniform circular motion has ______.
Derive an expression for maximum speed moving along a horizontal circular track.