Advertisements
Advertisements
प्रश्न
A horizontal force of 0.5 N is required to move a metal plate of area 10−2 m2 with a velocity of 3 × 10−2m/s, when it rests on 0.5 × 10−3 m thick layer of glycerin. Find the coefficient of viscosity of glycerin.
उत्तर
Given:
F = 0.5 N = 5 × 10−1
A = 10−2 m2,
dv = 3 × 10−2 m/s
dx = 0.5 × 10−3 m = 5 × 10−4 m
To find:
The coefficient of viscosity of glycerin (η) = ?
Formula:
`eta = F/(A(dv)/(dx))`
= `(5 xx 10^-1)/(10^-2 xx ((3 xx 10^-2)/(5 xx 10^-4))`
= `(5 xx 10^-1)/10^-2 xx (5 xx 10^-4)/(3 xx 10^-2)`
= `25/3 xx 10^-1`
= 8.33 × 10−1
∴ η = 0.833 Ns/m2
APPEARS IN
संबंधित प्रश्न
Answer in brief:
A uniform disc and a hollow right circular cone have the same formula for their M.I. when rotating about their central axes. Why is it so?
A road is constructed as per the given requirements. The coefficient of static friction between the tyres of a vehicle on this road is 0.8, will there be any lower speed limit? By how much can the upper speed limit exceed in this case?
(Given: r = 72 m, vo = 216 km/h, w = 10 m, θ = 78°4', h = 9.805 m)
Using the energy conservation, derive the expressions for the minimum speeds at different locations along a vertical circular motion controlled by gravity. Is zero speed possible at the uppermost point? Under what condition/s?
For a body moving with constant speed in a horizontal circle, which of the following remains constant?
A cyclist with combined mass 80 kg goes around a curved road with a uniform speed 20 m/s. He has to bend inward by an angle `theta` = tan-1 (0.50) with the vertical. The force of friction acting at the point of contact of tyres and road surface is______.
[g = 10 m/s2 ]
The maximum safe speed, for which a banked road is intended, is to be increased by 20 %. If the angle of banking is not changed, then the radius of curvature of the road should be changed from 30 m to ____________.
A horizontal circular platform of mass 100 kg is rotating at 5 r.p.m. about vertical axis passing through its centre. A child of mass 20 kg is standing on the edge of platform. If the child comes to the centre of platform then the frequency of rotation will become ______.
A pendulum has length of 0.4 m and maximum speed 4 m/s. When the length makes an angle 30° with the horizontal, its speed will be ______.
`[sin pi/6 = cos pi/3 = 0.5 and "g" = 10 "m"//"s"^2]`
A car moves at a speed of 36 km hr-1 on a level road. The coefficient of friction between the tyres and the road is 0.8. The car negotiates a curve of radius R. If g = 10 ms-2 , then the car will skid (or slip) while negotiating the curve, if the value of R is ____________.
A body of mass 10 kg is attached to a wire 0.3 m long. Its breaking stress is 4.8 × 107 N/m2. The area of cross-section of the wire is 10-6m2. The maximum angular velocity with which it can be rotated 111 a horizontal circle is ______.
In the case of conical pendulum, if T is the tension in the string and θ is the semivertical angle of cone, then the component of tension which balances the centrifugal force in equilibrium position is ______.
A particle moves along a circular path of radius 'r' with uniform speed 'V'. The angle described by the particle in one second is ______.
In the case of conical pendulum, if 'T' is the tension in the string and 'θ' is the semi-vertical angle of cone, then the component which provides necessary centripetal force is ______.
A particle rotates in horizontal circle of radius 'R' in a conical funnel, with speed 'V'. The inner surface of the funnel is smooth. The height of the plane of the circle from the vertex of the funnel is ______.
(g = acceleration due to gravity)
A particle executes uniform circular motion with angular momentum 'L'. Its rotational kinetic energy becomes half when the angular frequency is doubled. Its new angular momentum is ______.
The two blocks, m = 10 kg and M = 50kg are free to move as shown. The coefficient of static friction between the blocks is 0.5 and there is no friction between M and the ground. A minimum horizontal force F is applied to hold m against M that is equal to ______.
If friction is made zero for a road, can a vehicle move safely on this road?
What is banking of a road?
A curved road 5 m wide is to be designed with a radius of curvature 900 m. What should be the elevation of the outer edge of the road above the inner edge optimum speed of the vehicles rounding the curve is 30 m/s.
A cyclist is undertaking horizontal circles inside a cylindrical well of radius 5 m. If the friction coefficient is 0.5, what should be the minimum speed of the cyclist?
A string of length 0.5 m carries a bob of mass 0.1 kg at its end. If this is to be used as a conical pendulum of period 0.4 π sec, the angle of inclination of the string with the vertical is ______. (g = 10m/s2)
Why does a motorcyclist moving along a level curve at high speed have to lean more than a cyclist moving along the same curve at low speed?
Derive an expression for maximum speed moving along a horizontal circular track.
The radius of a circular track is 200 m. Find the angle of banking of the track, if the maximum speed at which a car can be driven safely along it is 25 m/sec.