Advertisements
Advertisements
प्रश्न
Answer in brief:
A uniform disc and a hollow right circular cone have the same formula for their M.I. when rotating about their central axes. Why is it so?
उत्तर
A uniform disc and a hollow right circular cone have the same formula for their moment of inertia.
`"MI" = 1/2mr^2`
This is due to the fact that when a hollow right circular cone is sliced along its slanting side and the metal is stretched out, the cone's surface becomes a circle. This shape is similar to that of a disc, which is a circular as well. As a result, they both share the same moment of inertia formula.
APPEARS IN
संबंधित प्रश्न
Answer in Brief:
Part of a racing track is to be designed for curvature of 72m. We are not recommending the vehicles to drive faster than 216 kmph. With what angle should the road be tilted? By what height will its outer edge be, with respect to the inner edge if the track is 10 m wide?
A road is constructed as per the given requirements. The coefficient of static friction between the tyres of a vehicle on this road is 0.8, will there be any lower speed limit? By how much can the upper speed limit exceed in this case?
(Given: r = 72 m, vo = 216 km/h, w = 10 m, θ = 78°4', h = 9.805 m)
A metallic ring of mass 1 kg has a moment of inertia 1 kg m2 when rotating about one of its diameters. It is molten and remolded into a thin uniform disc of the same radius. How much will its moment of inertia be, when rotated about its own axis.
A block of mass m is moving on rough horizontal surface with momentum p. The coefficient of friction between the block and surface is µ. The distance covered by the block before it stops is [g =acceleration due to gravity)
A vehicle of mass m is moving with momentum p on a rough horizontal road. The coefficient of friction between the tyres and the horizontal road is µ. The stopping distance is ____________.
(g = acceleration due to gravity)
The maximum safe speed, for which a banked road is intended, is to be increased by 20 %. If the angle of banking is not changed, then the radius of curvature of the road should be changed from 30 m to ____________.
A horizontal circular platform of mass 100 kg is rotating at 5 r.p.m. about vertical axis passing through its centre. A child of mass 20 kg is standing on the edge of platform. If the child comes to the centre of platform then the frequency of rotation will become ______.
A pendulum has length of 0.4 m and maximum speed 4 m/s. When the length makes an angle 30° with the horizontal, its speed will be ______.
`[sin pi/6 = cos pi/3 = 0.5 and "g" = 10 "m"//"s"^2]`
A body of mass 10 kg is attached to a wire 0.3 m long. Its breaking stress is 4.8 × 107 N/m2. The area of cross-section of the wire is 10-6m2. The maximum angular velocity with which it can be rotated 111 a horizontal circle is ______.
A motorcyclist rides in a horizontal circle about central vertical axis inside a cylindrical chamber of radius 'r'. If the coefficient of friction between the tyres and the inner surface of chamber is 'µ', the minimum speed of motorcyclist to prevent him from skidding is ______.
('g' =acceleration due to gravity)
A particle moves along a circular path of radius 'r' with uniform speed 'V'. The angle described by the particle in one second is ______.
In the case of conical pendulum, if 'T' is the tension in the string and 'θ' is the semi-vertical angle of cone, then the component which provides necessary centripetal force is ______.
A particle rotates in horizontal circle of radius 'R' in a conical funnel, with speed 'V'. The inner surface of the funnel is smooth. The height of the plane of the circle from the vertex of the funnel is ______.
(g = acceleration due to gravity)
A particle executes uniform circular motion with angular momentum 'L'. Its rotational kinetic energy becomes half when the angular frequency is doubled. Its new angular momentum is ______.
If friction is made zero for a road, can a vehicle move safely on this road?
A curved road 5 m wide is to be designed with a radius of curvature 900 m. What should be the elevation of the outer edge of the road above the inner edge optimum speed of the vehicles rounding the curve is 30 m/s.
A string of length 0.5 m carries a bob of mass 0.1 kg at its end. If this is to be used as a conical pendulum of period 0.4 π sec, the angle of inclination of the string with the vertical is ______. (g = 10m/s2)
Write about the kinetic friction between the road and the tyres.
The radius of curvature of road is 60 m. If angle of banking is 27°, find maximum speed with which vehicle can tum along this curve. . (g = 9.8 m/s2)
Why does a motorcyclist moving along a level curve at high speed have to lean more than a cyclist moving along the same curve at low speed?
The radius of a circular track is 200 m. Find the angle of banking of the track, if the maximum speed at which a car can be driven safely along it is 25 m/sec.