Advertisements
Advertisements
प्रश्न
A metallic ring of mass 1 kg has a moment of inertia 1 kg m2 when rotating about one of its diameters. It is molten and remolded into a thin uniform disc of the same radius. How much will its moment of inertia be, when rotated about its own axis.
उत्तर
Given:
mass of ring and disc is M =1 kg
Moment of inertia of ring at diameter (Ir)d = 1 kg m2
Rr = Rd
To find:
Moment of inertia of disc about own axis = Id =?
Solution:
Using theorem of perpendicular axes, for a ring M.I about its axis passing through C.M and perpendicular to its plane is twice the M.I about its any diameter, which is given by,
(Ir)c = 2 (Ir)d
= 2 × 1
MRr2 = 2 kg m2
Rr2 = Rd2 = 2 meter
Hence,
Moment of inertia of disc about own axis is given by,
Id =`1/2` MRd2
= `1/2` × 1 × 2
Id = 1 kg m2
APPEARS IN
संबंधित प्रश्न
A road is constructed as per the given requirements. The coefficient of static friction between the tyres of a vehicle on this road is 0.8, will there be any lower speed limit? By how much can the upper speed limit exceed in this case?
(Given: r = 72 m, vo = 216 km/h, w = 10 m, θ = 78°4', h = 9.805 m)
Using the energy conservation, derive the expressions for the minimum speeds at different locations along a vertical circular motion controlled by gravity. Is zero speed possible at the uppermost point? Under what condition/s?
Using energy conservation, along a vertical circular motion controlled by gravity, prove that the difference between the extreme tensions (or normal forces) depends only upon the weight of the objects.
A block of mass m is moving on rough horizontal surface with momentum p. The coefficient of friction between the block and surface is µ. The distance covered by the block before it stops is [g =acceleration due to gravity)
A cyclist with combined mass 80 kg goes around a curved road with a uniform speed 20 m/s. He has to bend inward by an angle `theta` = tan-1 (0.50) with the vertical. The force of friction acting at the point of contact of tyres and road surface is______.
[g = 10 m/s2 ]
A horizontal circular platform of mass 100 kg is rotating at 5 r.p.m. about vertical axis passing through its centre. A child of mass 20 kg is standing on the edge of platform. If the child comes to the centre of platform then the frequency of rotation will become ______.
In the case of conical pendulum, if T is the tension in the string and θ is the semivertical angle of cone, then the component of tension which balances the centrifugal force in equilibrium position is ______.
A motorcyclist rides in a horizontal circle about central vertical axis inside a cylindrical chamber of radius 'r'. If the coefficient of friction between the tyres and the inner surface of chamber is 'µ', the minimum speed of motorcyclist to prevent him from skidding is ______.
('g' =acceleration due to gravity)
A flat curved road on highway has radius of curvature 400 m. A car rounds the curve at a speed of 24 m/s. The minimum value of coefficient of friction to prevent car from sliding is ______.
(take g = 10 m/s2)
A particle rotates in horizontal circle of radius 'R' in a conical funnel, with speed 'V'. The inner surface of the funnel is smooth. The height of the plane of the circle from the vertex of the funnel is ______.
(g = acceleration due to gravity)
A particle executes uniform circular motion with angular momentum 'L'. Its rotational kinetic energy becomes half when the angular frequency is doubled. Its new angular momentum is ______.
The two blocks, m = 10 kg and M = 50kg are free to move as shown. The coefficient of static friction between the blocks is 0.5 and there is no friction between M and the ground. A minimum horizontal force F is applied to hold m against M that is equal to ______.
What is banking of a road?
Why it is necessary banking of a road?
A string of length 0.5 m carries a bob of mass 0.1 kg at its end. If this is to be used as a conical pendulum of period 0.4 π sec, the angle of inclination of the string with the vertical is ______. (g = 10m/s2)
Write about the kinetic friction between the road and the tyres.
The radius of curvature of road is 60 m. If angle of banking is 27°, find maximum speed with which vehicle can tum along this curve. . (g = 9.8 m/s2)
A body performing uniform circular motion has ______.
Why does a motorcyclist moving along a level curve at high speed have to lean more than a cyclist moving along the same curve at low speed?
Derive an expression for maximum speed moving along a horizontal circular track.
A horizontal force of 0.5 N is required to move a metal plate of area 10−2 m2 with a velocity of 3 × 10−2m/s, when it rests on 0.5 × 10−3 m thick layer of glycerin. Find the coefficient of viscosity of glycerin.
The radius of a circular track is 200 m. Find the angle of banking of the track, if the maximum speed at which a car can be driven safely along it is 25 m/sec.