Advertisements
Advertisements
प्रश्न
Answer in brief:
A uniform disc and a hollow right circular cone have the same formula for their M.I. when rotating about their central axes. Why is it so?
उत्तर
A uniform disc and a hollow right circular cone have the same formula for their moment of inertia.
`"MI" = 1/2mr^2`
This is due to the fact that when a hollow right circular cone is sliced along its slanting side and the metal is stretched out, the cone's surface becomes a circle. This shape is similar to that of a disc, which is a circular as well. As a result, they both share the same moment of inertia formula.
APPEARS IN
संबंधित प्रश्न
During a stunt, a cyclist (considered to be a particle) is undertaking horizontal circles inside a cylindrical well of radius 6.05 m. If the necessary friction coefficient is 0.5, how much minimum speed should the stunt artist maintain? The mass of the artist is 50 kg. If she/he increases the speed by 20%, how much will the force of friction be?
A metallic ring of mass 1 kg has a moment of inertia 1 kg m2 when rotating about one of its diameters. It is molten and remolded into a thin uniform disc of the same radius. How much will its moment of inertia be, when rotated about its own axis.
Using energy conservation, along a vertical circular motion controlled by gravity, prove that the difference between the extreme tensions (or normal forces) depends only upon the weight of the objects.
A vehicle of mass m is moving with momentum p on a rough horizontal road. The coefficient of friction between the tyres and the horizontal road is µ. The stopping distance is ____________.
(g = acceleration due to gravity)
A horizontal circular platform of mass 100 kg is rotating at 5 r.p.m. about vertical axis passing through its centre. A child of mass 20 kg is standing on the edge of platform. If the child comes to the centre of platform then the frequency of rotation will become ______.
A pendulum has length of 0.4 m and maximum speed 4 m/s. When the length makes an angle 30° with the horizontal, its speed will be ______.
`[sin pi/6 = cos pi/3 = 0.5 and "g" = 10 "m"//"s"^2]`
A car moves at a speed of 36 km hr-1 on a level road. The coefficient of friction between the tyres and the road is 0.8. The car negotiates a curve of radius R. If g = 10 ms-2 , then the car will skid (or slip) while negotiating the curve, if the value of R is ____________.
A motorcyclist rides in a horizontal circle about central vertical axis inside a cylindrical chamber of radius 'r'. If the coefficient of friction between the tyres and the inner surface of chamber is 'µ', the minimum speed of motorcyclist to prevent him from skidding is ______.
('g' =acceleration due to gravity)
A particle moves along a circular path of radius 'r' with uniform speed 'V'. The angle described by the particle in one second is ______.
In the case of conical pendulum, if 'T' is the tension in the string and 'θ' is the semi-vertical angle of cone, then the component which provides necessary centripetal force is ______.
A flat curved road on highway has radius of curvature 400 m. A car rounds the curve at a speed of 24 m/s. The minimum value of coefficient of friction to prevent car from sliding is ______.
(take g = 10 m/s2)
A particle rotates in horizontal circle of radius 'R' in a conical funnel, with speed 'V'. The inner surface of the funnel is smooth. The height of the plane of the circle from the vertex of the funnel is ______.
(g = acceleration due to gravity)
If friction is made zero for a road, can a vehicle move safely on this road?
What is banking of a road?
Why it is necessary banking of a road?
The centripetal acceleration of the bob of a conical pendulum is, in the usual notation, ______.
A cyclist is undertaking horizontal circles inside a cylindrical well of radius 5 m. If the friction coefficient is 0.5, what should be the minimum speed of the cyclist?
Write about the kinetic friction between the road and the tyres.
Derive an expression for maximum speed moving along a horizontal circular track.
A horizontal force of 0.5 N is required to move a metal plate of area 10−2 m2 with a velocity of 3 × 10−2m/s, when it rests on 0.5 × 10−3 m thick layer of glycerin. Find the coefficient of viscosity of glycerin.
The radius of a circular track is 200 m. Find the angle of banking of the track, if the maximum speed at which a car can be driven safely along it is 25 m/sec.