हिंदी

The Ratio Between the Volume of a Sphere and Volume of a Circumscribing Right Circular Cylinder is - Mathematics

Advertisements
Advertisements

प्रश्न

The ratio between the volume of a sphere and volume of a circumscribing right circular cylinder is 

विकल्प

  • 2 : 1

  • 1 : 1

  •  2 : 3

  •  1 : 2

MCQ

उत्तर

In the given problem, we need to find the ratio between the volume of a sphere and volume of a circumscribing right circular cylinder. This means that the diameter of the sphere and the cylinder are the same. Let us take the diameter as d.

Here,

Volume of a sphere (V1) = `(4/3) pi (d/2)^3`

`(4/3) pi (d^3/8)`

`= (pi d^3 ) /6`

As the cylinder is circumscribing the height of the cylinder will also be equal to the height of the sphere. So,

Volume of a cylinder (V2) = `pi (d/2)^2 h`

`= pi d^2/4(d)`

`=(pi d^3)/4`

Now, the ratio of the volume of sphere to the volume of the cylinder = `V_1/V_2`

`V_1/V_2=(((pid^3)/6))/(((pi d^3)/4))`

         `=4/6`

          `=2/3`

So, the ratio of the volume of sphere to the volume of the cylinder is  2: 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Surface Areas and Volume of a Sphere - Exercise 21.4 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 21 Surface Areas and Volume of a Sphere
Exercise 21.4 | Q 13 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×