Advertisements
Advertisements
प्रश्न
The sides of a triangle are given by the equations y - 2 = 0; y + 1 = 3 (x - 2) and x + 2y = 0.
Find, graphically :
(i) the area of a triangle;
(ii) the coordinates of the vertices of the triangle.
उत्तर
y - 2 = 0
⇒ y = 2
y + 1 = 3(x - 2)
⇒ y + 1 = 3x - 6
⇒ y = 3x - 6 - 1
⇒ y = 3x - 7
The table for y + 1 = 3(x - 2) is
X | 1 | 2 | 3 |
Y | - 4 | - 1 | 2 |
Also we have
x + 2y = 0
⇒ x = - 2y
The table for x + y = 0 is
X | - 4 | 4 | - 6 |
Y | 2 | - 2 | 3 |
Plotting the above points we get the folllowing required graph:
(i) The area of the triangle ABC = `(1)/(2) xx "AB" xx "CD"`
= `(1)/(2) xx 7 xx 3`
= `(21)/(2)`
= 10.5 sq.units
(ii) The coordinates of the verticles of the triangle are ( - 4, 2), (3, 2) and (2, -1).
APPEARS IN
संबंधित प्रश्न
Using the same axes of co-ordinates and the same unit, solve graphically :
x + y = 0 and 3x - 2y = 10.
(Take at least 3 points for each line drawn).
Use the graphical method to find the value of 'x' for which the expressions `(3x + 2)/(2) and (3)/(4)x - 2`
The course of an enemy submarine, as plotted on rectangular co-ordinate axes, gives the equation 2x + 3y = 4. On the same axes, a destroyer's course is indicated by the graph x - y = 7. Use the graphical method to find the point at which the paths of the submarine and the destroyer intersect?
Solve the following equations graphically :
x + 3y = 8
3x = 2 + 2y
Solve the following equations graphically :
2x - y = 9
5x + 2y = 27
Solve the following equations graphically :
x - 2y = 2
`x/(2) - y` = 1
Solve the following system of linear equations graphically :
4x - 5y - 20 = 0
3x + 3y - 15 = 0
Determine the vertices of the triangle formed by the lines, represented by the above equations and the y-axis.
Solve the following system of equations graphically:
6x - 3y + 2 = 7x + 1
5x + 1 = 4x - y + 2
Also, find the area of the triangle formed by these lines and x-axis in each graph.
Solve graphically
3x + 2y = 4, 9x + 6y – 12 = 0
Solve graphically
x = −3, y = 3