Advertisements
Advertisements
प्रश्न
The tens and units place of a two digit number is m and n respectively. Write the polynomial which represents the two digit number.
उत्तर
Digit at the tens place = m
Digit at the units place = n
∴ Two digit number = 10 × Digit at the tens place + Digit at the units place
= 10 × m + n
= 10m + n
Thus, the polynomial which represents the two digit number is 10m + n.
APPEARS IN
संबंधित प्रश्न
Add the given polynomials.
`x^3 - 2x^2 - 9 ; 5x^3 + 2x + 9`
Multiply the given polynomial.
`2x ; x^2 - 2x - 1`
Multiply the given polynomial.
`2y + 1 ; y^2 - 2y^3 + 3y`
Divide first polynomial by second polynomial and write the answer in the form ‘Dividend = Divisor × Quotient + Remainder’.
`x^3 - 64 ; x - 4`
Divide first polynomial by second polynomial and write the answer in the form ‘Dividend = Divisor × Quotient + Remainder’.
`5x^5 + 4x^4 - 3x^3 + 2x^2 +2;x^2-x`
Add the following polynomial.
`7x^4 - 2x^3 + x + 10 ; 3x^4 + 15x^3 + 9x^2 - 8x + 2`
Add the following polynomial.
`3p^3q+ 2p^2q + 7; 2p^2q + 4pq - 2p^3q`
Multiply the following polynomial.
`(5m^3 - 2) (m^2 - m + 3)`
Which polynomial is to be subtracted from x2 + 13x + 7 to get the polynomial 3x2 + 5x − 4?