Advertisements
Advertisements
प्रश्न
Add the following polynomial.
`7x^4 - 2x^3 + x + 10 ; 3x^4 + 15x^3 + 9x^2 - 8x + 2`
उत्तर
`(7x^4 - 2x^3 + x + 10) +( 3x^4 + 15x^3 + 9x^2 - 8x + 2)`
`= 7x^4 + 3x^4 - 2x^3 +15x^3 +9x^2 + x - 8x + 10 +2`
`= 10x^4 + 13x^3 + 9x^2 - 7x + 12`
APPEARS IN
संबंधित प्रश्न
The tens and units place of a two digit number is m and n respectively. Write the polynomial which represents the two digit number.
Add the given polynomial.
`2y^2 + 7y + 5 ; 3y + 9 ; 3y^2 - 4y - 3`
Subtract the second polynomial from the first.
`x^2 - 9x + sqrt 3 ; -19x + sqrt 3 +7x^2`
Subtract the second polynomial from the first.
`2ab^2 + 3a^2b - 4ab ; 3ab - 8ab^2 + 2a^2b`
Multiply the given polynomial.
`x^5 - 1 ; x^3 +2x^2 + 2`
Divide first polynomial by second polynomial and write the answer in the form ‘Dividend = Divisor × Quotient + Remainder’.
`x^3 - 64 ; x - 4`
Subtract the second polynomial from the first.
`5x^2 - 2y + 9 ; 3x^2 + 5y - 7`
Multiply the following polynomial.
`(m^3 - 2m + 3)(m^4 - 2m^2 + 3m + 2)`
Simplify.
(8m2 + 3m − 6) − (9m − 7) + (3m2 − 2m + 4)