Advertisements
Advertisements
प्रश्न
Multiply the following polynomial.
`(m^3 - 2m + 3)(m^4 - 2m^2 + 3m + 2)`
उत्तर
`(m^3 - 2m + 3)(m^4 - 2m^2 + 3m + 2)`
`= m^3 (m^4 - 2m^2 + 3m + 2) - 2m (m^4 - 2m^2 + 3m + 2) + 3(m^4 - 2m^2 + 3m + 2)` ...(Each term of second polynomials is multiplied by each term of first polynomial.)
`= m^7 - 2m^5 + 3m^4 + 2m^3 -2m^5 + 4m^3 - 6m^2 - 4m + 3m^4 - 6m^2 + 9m + 6`
`= m^7 - 2m^5 - 2m^5 + 3m^4 + 3m^4 +2m^3 +4m^3 - 6m^2 - 6m^2 - 4m + 9m + 6` ...(Like terms taken together.)
`= m^7 - 4m^5 + 6m^4 + 6m^3 - 12m^2 + 5m +6`
APPEARS IN
संबंधित प्रश्न
The tens and units place of a two digit number is m and n respectively. Write the polynomial which represents the two digit number.
Add the given polynomial.
`2y^2 + 7y + 5 ; 3y + 9 ; 3y^2 - 4y - 3`
Subtract the second polynomial from the first.
`2ab^2 + 3a^2b - 4ab ; 3ab - 8ab^2 + 2a^2b`
Multiply the given polynomial.
`2x ; x^2 - 2x - 1`
Multiply the given polynomial.
`2y + 1 ; y^2 - 2y^3 + 3y`
Divide first polynomial by second polynomial and write the answer in the form ‘Dividend = Divisor × Quotient + Remainder’.
`x^3 - 64 ; x - 4`
Divide first polynomial by second polynomial and write the answer in the form ‘Dividend = Divisor × Quotient + Remainder’.
`5x^5 + 4x^4 - 3x^3 + 2x^2 +2;x^2-x`
Add the following polynomial.
`7x^4 - 2x^3 + x + 10 ; 3x^4 + 15x^3 + 9x^2 - 8x + 2`
Add the following polynomial.
`3p^3q+ 2p^2q + 7; 2p^2q + 4pq - 2p^3q`