Advertisements
Advertisements
प्रश्न
तीन सिक्के एक बार उछाले जाते हैं। निम्नलिखित की प्रायिकता ज्ञात कीजिए:
- तीन चित्त प्रकट होना
- 2 चित्त प्रकट होना
- न्यूनतम 2 चित्त प्रकट होना
- अधिकतम 2 चित्त प्रकट होना
- एक भी चित्त प्रकट न होना
- 3 पट् प्रकट होना
- तथ्यतः 2 पट् प्रकट होना
- कोई भी पट प्रकट न होना
- अधिकतम 2 पट् प्रकट होना
उत्तर
यदि 3 सिक्के उछाले जाते हैं तो परीक्षण का प्रतिदर्श समष्टि
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}
कुल सम्भावित परिणाम = 8
(i) तीन चित्त {HHH} एक तरीके से प्रकट होता है।
अतः 3 चित्त प्राप्त करने की प्रायिकता = `1/8`
(ii) 2 चित्त या 2 चित्त 1 पट प्राप्त करने के HHT, HTH, THH तीन तरीके हैं।
कुल सम्भावित परिणाम = 8
2 चित्त प्रकट होने की प्रायिकता = `3/8`
(iii) न्यूनतम 2 चित्त प्राप्त करने के लिए 2 चित्त 1 पट् या 3 चित्त आएंगे
∴ न्यूनतम 2 चित्त HHT, HTH, THH, HHH, चार तरीकों से प्रकट हो सकते हैं।
अतः न्यूनतम 2 चित्त प्रकट होने की प्रायिकता = `4/8`
= `1/2`
(iv) अधिकतम 2 चित्त, इस प्रकार प्रकट होंगे।
(a) कोई चित्त नहीं या तीन पट्
(b) एक चित्त 2 पट्
(c) 2 चित्त 1 पट्
यह {TIT, HTT, THT, TTH, HHT, HTH, THH} सात तरीकों से प्रकट हो सकते हैं।
कुल संभावित परिणाम = 8
∴ अधिकतम 2 चित्त प्रकट होने की प्रायिकता = `7/8`
(v) एक भी चित्त न आने का अर्थ है तीन पट् प्रकट होना जो (TTT) एक तरीके से हो सकता है।
कुल संभावित परिणाम = 8
अतः एक भी चित्त न आने की प्रायिकता = `1/8`
(vi) तीन पट् (TTT) एक तरीके से प्रकट हो सकते हैं।
तीन पट् प्रकट होने की प्रायिकता = `1/8`
(vii) तथ्यतः 2 पट् (TTH, THT, HTT) तीन तरीकों से प्राप्त हो सकते हैं।
कुल संभावित परिणाम = 8
∴ दो पट् प्रकट होने की प्रायिकता = `3/8`
(viii) कोई पट् नहीं का अर्थ है तीनों चित्त प्रकट होते हैं तो (HHH) 1 तरीके से ही हो सकता है।
कुल संभावित परिणाम = 8
कोई पट् प्रकट न होने की प्रायिकता = `1/8`
(ix) अधिकतम दो पट् प्रकट होना
⇒ तीनों पट् प्रकट नहीं होते।
तीनों पट् प्रकट होने की प्रायिकता = `1/8`
∴ अधिकतम दो पट् प्रकट होने की प्रायिकता = 1 – (तीनों पट् प्रकट होने की प्रायिकता)
= `1 - 1/8`
= `7/8`
APPEARS IN
संबंधित प्रश्न
एक सिक्का दो बार उछाला जाता है। कम से कम एक पट् प्राप्त होने की क्या प्रायिकता है?
ताश की एक गड्डी के 52 पत्तों में से एक पत्ता यादृच्छया निकाला गया है।
- प्रतिदर्श समष्टि में कितने बिंदु हैं?
- पत्ते का हुकुम का इक्का होने की प्रायिकता क्या है?
- प्रायिकता ज्ञात कीजिए कि पत्ता
- इक्का है
- काले रंग का है।
एक अनभिनत सिक्के को चार बार उछाला जाता है और एक व्यक्ति प्रत्येक चित्त पर एक रू जीतता है और प्रत्येक पट् पर 1.50 रू हारता है। इस परीक्षण के प्रतिदर्श समष्टि से ज्ञात कीजिए कि आप चार उछालों में कितनी विभिन्न राशियाँ प्राप्त कर सकते हैं। साथ ही इन राशियों से प्रत्येक की प्रायिकता भी ज्ञात कीजिए।
यदि किसी घटना A की प्रायिकता `2/11` है तो घटना ‘A-नहीं’ की प्रायिकता ज्ञात कीजिए।
शब्द ‘ASSASSINATION’ से एक अक्षर यादृच्छया चुना जाता है। प्रायिकता ज्ञात कीजिए कि चुना गया अक्षर
- एक स्वर (vowel) है
- एक व्यंजन (consonant) है।
एक लाटरी में एक व्यक्ति 1 से 20 तक की संख्याओं में से छः भिन्न-भिन्न संख्याएँ यादृच्छया चुनता है और यदि ये चुनी गई छः संख्याएँ उन छः संख्याओं से मेल खाती हैं, जिन्हें लाटरी समिति ने पूर्वनिर्धारित कर रखा है, तो वह व्यक्ति इनाम जीत जाता है। लाटरी के खेल में इनाम जीतने की प्रायिकता क्या है? [संकेत: संख्याओं के प्राप्त होने का क्रम महत्वपूर्ण नहीं है]
जाँच कीजिए कि निम्न प्रायिकताएँ P(A) और P(B) युक्ति संगत (consistently) परिभाषित की गई हैं:
P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6
जाँच कीजिए कि निम्न प्रायिकताएँ P(A) और P(B) युक्ति संगत (consistently) परिभाषित की गई हैं:
P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8
निम्नलिखित सारणी में खाली स्थान भरिए:
P(A) | P(B) | P(A ∩ B) | P(A ∪ B) |
`1/3` | `1/5` | `1/15` | .... |
निम्नलिखित सारणी में खाली स्थान भरिए:
P(A) | P(B) | P(A ∩ B) | P(A ∪ B) |
0.5 | 0.35 | .... | 0.7 |
यदि E और F घटनाएँ इस प्रकार की हैं कि P(E) = `1/4`, P(F) = `1/2`, और P(E और F) = `1/8`, तो ज्ञात कीजिए
- P(E या F)
- P(E-नहीं और F-नहीं)।
घटनाएँ A और B इस प्रकार हैं कि P(A) = 0.42, P(B) = 0.48 और P(A और B) = 0.16, ज्ञात कीजिए:
P(A-नहीं)
एक पाठशाला की कक्षा XI के 40% विद्यार्थी गणित पढ़ते हैं और 30% जीव विज्ञान पढ़ते हैं। कक्षा के 10% विद्यार्थी गणित और जीव विज्ञान दोनों पढ़ते हैं । यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है, तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।
एक कक्षा के 60 विद्यार्थियों में से 30 ने एन. सी. सी. (NCC), 32 ने एन. एस. एस. (NSS) और 24 ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
- विद्यार्थी ने एन.सी.सी. या एन.एस.एस. को चुना है।
- विद्यार्थी ने न तो एन.सी.सी. और न ही एन.एस.एस. को चुना है।
- विद्यार्थी ने एन.एस.एस. को चुना है किंतु एन.सी.सी को नहीं चुना है।
एक पासे के दो फलकों में से प्रत्येक पर संख्या `1` अंकित है, तीन फलकों में प्रत्येक पर संख्या '2' अंकित है और एक फलक पर संख्या '3' अंकित है। यदि पासा एक बार फेंका जाता है, तो निम्नलिखित ज्ञात कीजिए:
- P(2)
- P(1 या 3)
- P(3-नहीं)
100 विद्यार्थियों में से 40 और 60 विद्यार्थियों के दो वर्ग बनाए गए हैं। यदि आप और आपका एक मित्र 100 विद्यार्थियों में हैं तो प्रायिकता क्या है कि
- आप दोनों एक ही वर्ग में हों?
- आप दोनों अलग-अलग वर्गों में हों?
तीन व्यक्तियों के लिए तीन पत्र लिखवाए गए हैं और प्रत्येक के लिए पता लिखा एक लिफाफा है। पत्रों को लिफाफों में यादृच्छया इस प्रकार डाला गया कि प्रत्येक लिफाफे में एक ही पत्र है। प्रायिकता ज्ञात कीजिए कि कम से कम एक पत्र अपने सही लिफाफे में डाला गया है।
एक संस्था के कर्मचारियों में से 5 कर्मचारियों का चयन प्रबंध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्योरा निम्नलिखित है:
क्रम | नाम | लिंग | आयु (वर्षो में) |
1. | हरीश | M | 30 |
2. | रोहन | M | 33 |
3. | शीतल | F | 46 |
4. | ऐलिस | F | 28 |
5. | सलीम | M | 41 |
इस समूह से प्रवक्ता पद के लिए यादृच्छया एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या 35 वर्ष से अधिक आयु का होने की प्रायिकता क्या है?
यदि 0, 1, 3, 5 और 7 अंकों द्वारा 5000 से बड़ी चार अंकों की संख्या का यादृच्छया निर्माण किया गया हो तो पाँच से भाज्य संख्या के निर्माण की क्या प्रायिकता है जब, अंकों की पुनरावृत्ति की जाए?
किसी अटैची के ताले में चार चक्र लगे हैं जिनमें प्रत्येक पर 0 से 9 तक 10 अंक अंकित हैं। ताला चार अंकों के एक विशेष क्रम (अंकों की पुनरावृत्ति नहीं) द्वारा ही खुलता है। इस बात की क्या प्रायिकता है कि कोई व्यक्ति अटैची खोलने के लिए सही क्रम का पता लगा ले।
एक लाटरी में 10000 टिकट बेचे गए जिनमें दस समान इनाम दिए जाने हैं। कोई भी ईनाम न मिलने की प्रायिकता क्या है यदि आप दो टिकट खरीदते हैं?
यदि 0, 1, 3, 5 और 7 अंकों द्वारा 5000 से बड़ी चार अंकों की संख्या का यादृच्छया निर्माण किया गया हो तो पाँच से भाज्य संख्या के निर्माण की क्या प्रायिकता है जब, अंकों की पुनरावृत्ति नहीं की जाए?