हिंदी

तीन व्यक्तियों के लिए तीन पत्र लिखवाए गए हैं और प्रत्येक के लिए पता लिखा एक लिफाफा है। पत्रों को लिफाफों में यादृच्छया इस प्रकार डाला गया कि प्रत्येक लिफाफे में एक ही पत्र है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

तीन व्यक्तियों के लिए तीन पत्र लिखवाए गए हैं और प्रत्येक के लिए पता लिखा एक लिफाफा है। पत्रों को लिफाफों में यादृच्छया इस प्रकार डाला गया कि प्रत्येक लिफाफे में एक ही पत्र है। प्रायिकता ज्ञात कीजिए कि कम से कम एक पत्र अपने सही लिफाफे में डाला गया है।

योग

उत्तर

मान लीजिए लिफाफों को A, B, C और संगत पत्रों को क्रमशः a, b, c से निरूपित किया गया है।

(i) एक पत्र उसके संगत लिफाफे में और दूसरे दो गलत लिफाफे में रखने के तरीके
(Aa, Bc, Cb), (Ac, Bb, Ca), (Ab, Ba, Cc)

(ii) यदि दो पत्र संगत (ठीक) लिफाफों में रखे गए हैं तो तीसरा भी संगत (ठीक) लिफाफे में होगा।

(iii) तीनों पत्र उनके संगत (ठीक) लिफाफों में रखे जाए (Aa, Bb, Cc) एक तरीका है।

पत्र कम से कम एक संगत लिफाफे में रखे जाने के तरीके

3 + 1

= 4

तीन पत्रों को तीन लिफाफा में रखने के कुल तरीके = 3! = 6

∴ कम से कम एक पत्र संगत लिफाफे में रखे जाने की प्रायिकता = `4/6 = 2/3`

shaalaa.com
प्रायिकता की अभिगृहीतीय दृष्टिकोण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: प्रायिकता - अध्याय 16 पर विविध प्रश्नावली [पृष्ठ ४३२]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 16 प्रायिकता
अध्याय 16 पर विविध प्रश्नावली | Q 6. | पृष्ठ ४३२

संबंधित प्रश्न

प्रतिदर्श समष्टि S = {ω1, ω2, ω3, ω4, ω5, ω6, ω7} के परिणामों के लिए निम्नलिखित में से कौन से प्रायिकता निर्धारण वैध नहीं हैं:

परिणाम ω1 ω2 ω3 ω4 ω5 ω6 ω7
(a) 0.1 0.01 0.05 0.03 0.01 0.2 0.6
(b) `1/7` `1/7` `1/7` `1/7` `1/7` `1/7` `1/7`
(c) 0.1 0.2 0.3 0.4 0.5 0.6 0.7
(d) –0.1 0.2 0.3 0.4 -0.2 0.1 0.3
(e) `1/14` `2/14` `3/14` `4/14` `5/14` `6/14` `15/14`

एक सिक्का दो बार उछाला जाता है। कम से कम एक पट् प्राप्त होने की क्या प्रायिकता है?


एक पासा फेंका जाता है। निम्नलिखित घटनाओं की प्रायिकता ज्ञात कीजिए:

  1. एक अभाज्य संख्या प्रकट होना
  2. 3 या 3 से बड़ी संख्या प्रकट होना
  3. 1 या 1 से छोटी संख्या प्रकट होना
  4. छः से बड़ी संख्या प्रकट होना
  5. छः से छोटी संख्या प्रकट होना

एक अनभिनत (unbiased) सिक्का जिसके एक तल पर 1 और दूसरे तल पर 6 अंकित है तथा एक अनभिनत पासा दोनों को उछाला जाता है। प्रायिकता ज्ञात कीजिए कि प्रकट संख्याओं का योग (i) 3 है। (ii) 12 है।


नगर परिषद् में चार पुरुष व छः स्त्रियाँ हैं। यदि एक समिति के लिए यादृच्छया एक परिषद् सदस्य चुना गया है तो एक स्त्री के चुने जाने की कितनी संभावना है ?


यदि किसी घटना A की प्रायिकता `2/11` है तो घटना ‘A-नहीं’ की प्रायिकता ज्ञात कीजिए।


शब्द ‘ASSASSINATION’ से एक अक्षर यादृच्छया चुना जाता है। प्रायिकता ज्ञात कीजिए कि चुना गया अक्षर

  1. एक स्वर (vowel) है
  2. एक व्यंजन (consonant) है।

एक लाटरी में एक व्यक्ति 1 से 20 तक की संख्याओं में से छः भिन्न-भिन्न संख्याएँ यादृच्छया चुनता है और यदि ये चुनी गई छः संख्याएँ उन छः संख्याओं से मेल खाती हैं, जिन्हें लाटरी समिति ने पूर्वनिर्धारित कर रखा है, तो वह व्यक्ति इनाम जीत जाता है। लाटरी के खेल में इनाम जीतने की प्रायिकता क्या है? [संकेत: संख्याओं के प्राप्त होने का क्रम महत्वपूर्ण नहीं है]


जाँच कीजिए कि निम्न प्रायिकताएँ P(A) और P(B) युक्ति संगत (consistently) परिभाषित की गई हैं:

P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6


जाँच कीजिए कि निम्न प्रायिकताएँ P(A) और P(B) युक्ति संगत (consistently) परिभाषित की गई हैं:

P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8


निम्नलिखित सारणी में खाली स्थान भरिए:

P(A) P(B) P(A ∩ B) P(A ∪ B)
0.5 0.35 .... 0.7

यदि E और F घटनाएँ इस प्रकार की हैं कि P(E) = `1/4`, P(F) = `1/2`, और P(E और F) = `1/8`, तो ज्ञात कीजिए

  1. P(E या F)
  2. P(E-नहीं और F-नहीं)।

घटनाएँ A और B इस प्रकार हैं कि P(A) = 0.42, P(B) = 0.48 और P(A और B) = 0.16, ज्ञात कीजिए:

P(A-नहीं)


एक पाठशाला की कक्षा XI के 40% विद्यार्थी गणित पढ़ते हैं और 30% जीव विज्ञान पढ़ते हैं। कक्षा के 10% विद्यार्थी गणित और जीव विज्ञान दोनों पढ़ते हैं । यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है, तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।


एक पासे के दो फलकों में से प्रत्येक पर संख्या `1` अंकित है, तीन फलकों में प्रत्येक पर संख्या '2' अंकित है और एक फलक पर संख्या '3' अंकित है। यदि पासा एक बार फेंका जाता है, तो निम्नलिखित ज्ञात कीजिए:

  1. P(2)
  2. P(1 या 3)
  3. P(3-नहीं)

एक लाटरी में 10000 टिकट बेचे गए जिनमें दस समान इनाम दिए जाने हैं। कोई भी ईनाम न मिलने की प्रायिकता क्या है यदि आप एक टिकट खरीदते हैं?


एक संस्था के कर्मचारियों में से 5 कर्मचारियों का चयन प्रबंध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्योरा निम्नलिखित है:

क्रम नाम लिंग आयु (वर्षो में)
1. हरीश M 30
2. रोहन M 33
3. शीतल F 46
4. ऐलिस F 28
5. सलीम M 41

इस समूह से प्रवक्ता पद के लिए यादृच्छया एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या 35 वर्ष से अधिक आयु का होने की प्रायिकता क्या है?


यदि 0, 1, 3, 5 और 7 अंकों द्वारा 5000 से बड़ी चार अंकों की संख्या का यादृच्छया निर्माण किया गया हो तो पाँच से भाज्य संख्या के निर्माण की क्या प्रायिकता है जब, अंकों की पुनरावृत्ति की जाए?


किसी अटैची के ताले में चार चक्र लगे हैं जिनमें प्रत्येक पर 0 से 9 तक 10 अंक अंकित हैं। ताला चार अंकों के एक विशेष क्रम (अंकों की पुनरावृत्ति नहीं) द्वारा ही खुलता है। इस बात की क्या प्रायिकता है कि कोई व्यक्ति अटैची खोलने के लिए सही क्रम का पता लगा ले।


एक डिब्बे में 10 लाल, 20 नीली व 30 हरी गोलियाँ रखी हैं। डिब्बे से 5 गोलियाँ यादृच्छया निकाली जाती हैं। प्रायिकता क्या है कि कम से कम एक गोली हरी है?


एक लाटरी में 10000 टिकट बेचे गए जिनमें दस समान इनाम दिए जाने हैं। कोई भी ईनाम न मिलने की प्रायिकता क्या है यदि आप दो टिकट खरीदते हैं?


एक लाटरी में 10000 टिकट बेचे गए जिनमें दस समान इनाम दिए जाने हैं। कोई भी ईनाम न मिलने की प्रायिकता क्या है यदि आप 10 टिकट खरीदते हैं?


यदि 0, 1, 3, 5 और 7 अंकों द्वारा 5000 से बड़ी चार अंकों की संख्या का यादृच्छया निर्माण किया गया हो तो पाँच से भाज्य संख्या के निर्माण की क्या प्रायिकता है जब, अंकों की पुनरावृत्ति नहीं की जाए?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×