हिंदी

Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. Do the intermediate states of the system lie on - Physics

Advertisements
Advertisements

प्रश्न

Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

Do the intermediate states of the system (before settling to the final equilibrium state) lie on its P-V-T surface?

संक्षेप में उत्तर

उत्तर १

No. The given process is a case of free expansion. It is rapid and cannot be controlled. The intermediate states do not satisfy the gas equation and since they are in non-equilibrium states, they do not lie on the P-V-T surface of the system.

shaalaa.com

उत्तर २

The expansion is a free expansion. Therefore, the intermediate states are non-equilibrium states and the gas equation is not satisfied in these states. As a result, the gas cannot return to an equilibrium state which lies on the P-V-T surface.

shaalaa.com
Heat, Internal Energy and Work
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Thermodynamics - Exercises [पृष्ठ ३१६]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
अध्याय 12 Thermodynamics
Exercises | Q 6.4 | पृष्ठ ३१६

संबंधित प्रश्न

The outer surface of a cylinder containing a gas is rubbed vigorously by a polishing machine. The cylinder and its gas become warm. Is the energy transferred to the gas heat or work?


When we rub our hands they become warm. Have we supplied heat to the hands?


Refer to figure. Let ∆U1 and ∆U2 be the changes in internal energy of the system in the process A and B. Then _____________ .


Consider the process on a system shown in figure. During the process, the work done by the system ______________ .


Figure shows a cylindrical tube of volume V with adiabatic walls containing an ideal gas. The internal energy of this ideal gas is given by 1.5 nRT. The tube is divided into two equal parts by a fixed diathermic wall. Initially, the pressure and the temperature are p1, T1 on the left and p2, T2 on the right. The system is left for sufficient time so that the temperature becomes equal on the two sides. (a) How much work has been done by the gas on the left part? (b) Find the final pressures on the two sides. (c) Find the final equilibrium temperature. (d) How much heat has flown from the gas on the right to the gas on the left?


A mixture of fuel and oxygen is burned in a constant-volume chamber surrounded by a water bath. It was noticed that the temperature of water is increased during the process. Treating the mixture of fuel and oxygen as the system,

  1. Has heat been transferred?
  2. Has work been done?
  3. What is the sign of ∆U?

When does a system lose energy to its surroundings and its internal energy decreases? 


A system releases 100 kJ of heat while 80 kJ of work is done on the system. Calculate the change in internal energy.


Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

What is the final pressure of the gas in A and B?


Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

What is the change in internal energy of the gas?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×