हिंदी

A mixture of fuel and oxygen is burned in a constant-volume chamber surrounded by a water bath. It was noticed that the temperature of water is increased during the process. - Physics

Advertisements
Advertisements

प्रश्न

A mixture of fuel and oxygen is burned in a constant-volume chamber surrounded by a water bath. It was noticed that the temperature of water is increased during the process. Treating the mixture of fuel and oxygen as the system,

  1. Has heat been transferred?
  2. Has work been done?
  3. What is the sign of ∆U?
टिप्पणी लिखिए

उत्तर

  1. The heat from the chamber has been transferred to the water bath.
  2. The system (the mixture of fuel and oxygen) does no work because its volume does not change.
  3. There is an increase in the water's temperature. Therefore, ΔU is positive for water. For the system (the mixture of fuel and oxygen), ΔU is negative.
shaalaa.com
Heat, Internal Energy and Work
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Thermodynamics - Exercises [पृष्ठ १०७]

APPEARS IN

बालभारती Physics [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Thermodynamics
Exercises | Q 3.3 | पृष्ठ १०७

संबंधित प्रश्न

Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

Do the intermediate states of the system (before settling to the final equilibrium state) lie on its P-V-T surface?


Should the internal energy of a system necessarily increase if its temperature is increased?


The final volume of a system is equal to the initial volume in a certain process. Is the work done by the system necessarily zero? Is it necessarily nonzero?


Can work be done by a system without changing its volume?


When a tyre bursts, the air coming out is cooler than the surrounding air. Explain.


Consider the process on a system shown in figure. During the process, the work done by the system ______________ .


A gas is contained in a metallic cylinder fitted with a piston. The piston is suddenly moved in to compress the gas and is maintained at this position. As time passes the pressure of the gas in the cylinder ______________ .


A 100 kg lock is started with a speed of 2.0 m s−1 on a long, rough belt kept fixed in a horizontal position. The coefficient of kinetic friction between the block and the belt is 0.20. (a) Calculate the change in the internal energy of the block-belt system as the block comes to a stop on the belt. (b) Consider the situation from a frame of reference moving at 2.0 m s−1 along the initial velocity of the block. As seen from this frame, the block is gently put on a moving belt and in due time the block starts moving with the belt at 2.0 m s−1. calculate the increase in the kinetic energy of the block as it stops slipping  past the belt. (c) Find the work done in this frame by the external force holding the belt.


Figure shows three paths through which a gas can be taken from the state A to the state B. Calculate the work done by the gas in each of the three paths.


A substance is taken through the process abc as shown in figure. If the internal energy of the substance increases by 5000 J and a heat of 2625 cal is given to the system, calculate the value of J.


A gas is initially at a pressure of 100 kPa and its volume is 2.0 m3. Its pressure is kept constant and the volume is changed from 2.0 m3 to 2.5 m3. Its Volume is now kept constant and the pressure is increased from 100 kPa to 200 kPa. The gas is brought back to its initial state, the pressure varying linearly with its volume. (a) Whether the heat is supplied to or extracted from the gas in the complete cycle? (b) How much heat was supplied or extracted?


Figure shows a cylindrical tube of volume V with adiabatic walls containing an ideal gas. The internal energy of this ideal gas is given by 1.5 nRT. The tube is divided into two equal parts by a fixed diathermic wall. Initially, the pressure and the temperature are p1, T1 on the left and p2, T2 on the right. The system is left for sufficient time so that the temperature becomes equal on the two sides. (a) How much work has been done by the gas on the left part? (b) Find the final pressures on the two sides. (c) Find the final equilibrium temperature. (d) How much heat has flown from the gas on the right to the gas on the left?


A system releases 130 kJ of heat while 109 kJ of work is done on the system. Calculate the change in internal energy.


Which of the following system freely allows the exchange of energy and matter with its environment? 


What is the energy associated with the random, disordered motion of the molecules of a system called as?


Define heat.


A system releases 100 kJ of heat while 80 kJ of work is done on the system. Calculate the change in internal energy.


Explain the different ways through which the internal energy of the system can be changed. 


derive the relation between the change in internal energy (∆U), work is done (W), and heat (Q). 


Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

What is the final pressure of the gas in A and B?


Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

What is the change in internal energy of the gas?


Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

What is the change in the temperature of the gas?


In insulated systems, the amount of external work done by the gas is proportional to: 


In thermodynamics, heat and work are ______.


If a gas is compressed adiabatically:


The internal energy of one mole of argon is ______.


The internal energy of one mole of argon at 300 K is ______. (R = 8.314 J/mol.K)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×