Advertisements
Advertisements
प्रश्न
Two identical ball bearings in contact with each other and resting on a frictionless table are hit head-on by another ball bearing of the same mass moving initially with a speed V. If the collision is elastic, which of the following figure is a possible result after collision?
उत्तर १
Let m be the mass of each ball bearing. Before collision, total K.E. of the system
=1/2mv2 + 0 =1/2 mv2
After collision, K.E. of the system is
Case I, E1 = 1/2 (2m) (v/2)2 = 1/4 mv2
Case II, E2 = 1/2 mv2
Case III, E3 = 1/2(3m) (v/3)2 = 1/6mv2
Thus, case II is the only possibility since K.E. is conserved in this case.
उत्तर २
It can be observed that the total momentum before and after collision in each case is constant.
For an elastic collision, the total kinetic energy of a system remains conserved before and after collision.
For mass of each ball bearing m, we can write:
Total kinetic energy of the system before collision:
= (1/2)mV2 + (1/2)(2m) × 02
= (1/2)mV2
Case (i)
Total kinetic energy of the system after collision:
= (1/2) m × 0 + (1/2) (2m) (V/2)2
= (1/4)mV2
Hence, the kinetic energy of the system is not conserved in case (i).
Case (ii)
Total kinetic energy of the system after collision:
= (1/2)(2m) × 0 + (1/2)mV2
= (1/2) mV2
Hence, the kinetic energy of the system is conserved in case (ii).
Case (iii)
Total kinetic energy of the system after collision:
= (1/2)(3m)(V/3)2
= (1/6)mV2
Hence, the kinetic energy of the system is not conserved in case (iii).
Hence, Case II is the only possibility.
APPEARS IN
संबंधित प्रश्न
State if the following statement is true or false. Give a reason for your answer.
Total energy of a system is always conserved, no matter what internal and external forces on the body are present.
Answer the following question.
Discuss the following as special cases of elastic collisions and obtain their exact or approximate final velocities in terms of their initial velocities.
- Colliding bodies are identical.
- A very heavy object collides on a lighter object, initially at rest.
- A very light object collides on a comparatively much massive object, initially at rest.
Solve the following problem.
A spring ball of mass 0.5 kg is dropped from some height. On falling freely for 10 s, it explodes into two fragments of mass ratio 1:2. The lighter fragment continues to travel downwards with a speed of 60 m/s. Calculate the kinetic energy supplied during the explosion.
A mass M moving with velocity 'v' along x-axis collides and sticks to another mass 2M which is moving along Y-axis with velocity 3v. After collision, the velocity of the combination is ______.
Two bodies of masses 3 kg and 2 kg collide bead-on. Their relative velocities before and after collision are 20 m/s and 5 m/s respectively. The loss of kinetic energy of the system is ______.
Two blocks M1 and M2 having equal mass are free to move on a horizontal frictionless surface. M2 is attached to a massless spring as shown in figure. Iniially M2 is at rest and M1 is moving toward M2 with speed v and collides head-on with M2.
- While spring is fully compressed all the KE of M1 is stored as PE of spring.
- While spring is fully compressed the system momentum is not conserved, though final momentum is equal to initial momentum.
- If spring is massless, the final state of the M1 is state of rest.
- If the surface on which blocks are moving has friction, then collision cannot be elastic.
In an elastic collision of two billiard balls, which of the following quantities remain conserved during the short time of collision of the balls (i.e., when they are in contact).
- Kinetic energy.
- Total linear momentum?
Give reason for your answer in each case.
A ball of mass m, moving with a speed 2v0, collides inelastically (e > 0) with an identical ball at rest. Show that for head-on collision, both the balls move forward.
A ball of mass m, moving with a speed 2v0, collides inelastically (e > 0) with an identical ball at rest. Show that for a general collision, the angle between the two velocities of scattered balls is less than 90°.
Three identical blocks A, B and C are placed on horizontal frictionless surface. The blocks A and C are at rest. But A is approaching towards B with a speed 10 m/s. The coefficient of restitution for all collision is 0.5. The speed of the block C just after the collision is ______.