Advertisements
Advertisements
प्रश्न
use the rernainder theorem to find the factors of ( a-b )3 + (b-c )3 + ( c-a)3
उत्तर
We know that ( a-b )3 = a3 - 3a2b + 3 ab2 - b3 ..........(i)
And if we put a - b = 0 c a = b, and substitute this to the polynomial, we get
f(x) = 0 + (a - c)3 + (c - a)3 = (a - c)3 - (a - c)3 = 0
Hence, (a - b) is a factor. ⇒ a = b .... (ii)
Substiruong (1) in problem polynomial, we get
f (x) = 0 + (b3 - 3b2c + 3bc2 - c2) + (c3 - 3c2a + 3ca2 - a3)
= - 3 b2c + 3 bc2 - 3ca2 + 3ca2
= 3( -b2c + bc2 - ca2 + ca2)
If we put b - c = 0 ⇒ b = c , and subsorute this ID the pdynorrual, we get:
f (b = c) , 3 (-c2 × c + c × c2 - c × c2 + c × c2) = 0
Hence, till new factors are 3 x (a - b) x (b - c) ... (iii)
Similarly if we had put c = a, we would have got similar result.
So (c - a) is also a factor ..... (iv)
From (ii), (iu), and (iv), we get
3(a - b)(b - c)(c - a) is a complete factorization of the oiven polynomial.
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x.
Using the Remainder Theorem find the remainders obtained when ` x^3 + (kx + 8 ) x + k ` is divided by x + 1 and x - 2 .
Hence find k if the sum of the two remainders is 1.
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(2x3 − 2x2 + ax − a) ; (x − a)
If the polynomial y3 − 5y2 + 7y + m is divided by y + 2 and the remainder is 50 then find the value of m.
Find without division, the remainder in the following:
8x2 - 2x + 1 is divided by (2x+ 1)
Using remainder theorem, find the value of m if the polynomial f(x)= x3 + 5x2 -mx +6 leaves a remainder 2m when divided by (x-1),
What number should be subtracted from the polynomial f(x)= 2x3 - 5x2 +8x -17 so that the resulting polynomial is exactly divisible by (2x - 5)?
Find the remainder (without divisions) on dividing f(x) by x – 2, where f(x) = 5x2 – 1x + 4
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3)x – 6 leave the same remainder. Find the value of ‘p’.
If x25 + x24 is divided by (x + 1), the result is ______.