मराठी

Use the Rernainder Theorem to Find the Factors of ( A-b )3 + (B-c )3 + ( C-a) 3 - Mathematics

Advertisements
Advertisements

प्रश्न

use the rernainder theorem to find the factors of ( a-b )3 + (b-c )3 + ( c-a)3 

बेरीज

उत्तर

We know that ( a-b )= a3 - 3a2b + 3 ab2 - b3 ..........(i)

And if we put a - b = 0 c  a = b, and substitute this to the polynomial, we get 

f(x) = 0 + (a - c)3 + (c - a)3 = (a - c)3 - (a - c)3 = 0 

Hence, (a - b) is a factor. ⇒  a = b .... (ii)

Substiruong (1) in problem polynomial, we get 

f (x) = 0 + (b3 - 3b2c + 3bc2 - c2) + (c3 - 3c2a + 3ca2 - a3)

= - 3 b2c + 3 bc2 - 3ca2 + 3ca2  

= 3( -b2c + bc2 - ca2 + ca2)  

If we put b - c = 0 ⇒ b = c , and subsorute this ID the pdynorrual, we get: 

f (b = c) , 3 (-c2 × c + c × c2 - c × c2 + c × c2) = 0

Hence, till new factors are 3 x (a - b) x (b - c) ... (iii)

Similarly if we had put c = a, we would have got similar result. 

So (c - a) is also a factor ..... (iv)

From (ii), (iu), and (iv), we get  

3(a - b)(b - c)(c - a) is a complete factorization of the oiven polynomial. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Remainder And Factor Theorems - Exercise 10.1

APPEARS IN

फ्रँक Mathematics - Part 2 [English] Class 10 ICSE
पाठ 10 Remainder And Factor Theorems
Exercise 10.1 | Q 15

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×