Advertisements
Advertisements
प्रश्न
Using suitable identities, evaluate the following.
47 × 53
उत्तर
We have,
47 × 53 = (50 – 3)(50 + 3)
= (50)2 – (3)2 ...[Using the identity, (a – b)(a + b) = a2 – b2]
= 2500 – 9
= 2491
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 9.8 × 10.2
Simplify the following using the identities: \[\frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726}\]
Find the following product: (3x − 4y) (2x − 4y)
Find the following product: (3x2 − 4xy) (3x2 − 3xy)
Simplify: (2a + 3b + 4c) (4a2 + 9b2 + 16c2 – 6ab – 12bc – 8ca)
If 2x – 3y – 4z = 0, then find 8x3 – 27y3 – 64z3
Expand the following, using suitable identities.
`((4x)/5 + y/4)((4x)/5 + (3y)/4)`
Expand the following, using suitable identities.
`((2x)/3 - 2/3)((2x)/3 + (2a)/3)`
Carry out the following division:
17ab2c3 ÷ (–abc2)
Perform the following division:
(– qrxy + pryz – rxyz) ÷ (– xyz)