Advertisements
Advertisements
प्रश्न
Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, – 1, 4) and C(4, 5, – 1).
उत्तर
Given that A(1, 2, 3), B(2, –1, 4) and C(4, 5, –1)
`vec"AB" = (2 - 1)hat"i" + (-1 - 2)hat"j" + (4 - 3)hat"k"`
`vec"AB" = hat"i" - 3hat"j" + hat"k"`
`vec"AC" = (4 - 1)hat"i" + (5 - 2)hat"j" + (-1 - 3)hat"k"`
= `3hat"i" + 3hat"j" - 4hat"k"`
Area of ΔABC = `1/2 |vec"AB" xx vec"AC"|`
= `1/2|(hat"i", vec"j", vec"k"),(1, -3, 1),(3, 3, -4)|`
= `1/2 [hat"i"(12 - 3) - hat"j"(-4 - 3) + hat"k"(3 + 9)]`
= `1/2|9hat"i" + 7hat"j" + 12hat"k"|`
= `1/12 sqrt((9)^2 + (7)^2 + (12)^2)`
= `1/2 sqrt(81 + 49 + 144)`
= `1/2 sqrt(274)`
Hence, the required area is `1/2 sqrt(274)`.
APPEARS IN
संबंधित प्रश्न
If a unit vector `veca` makes angles `pi/3` with `hati,pi/4` with `hatj` and acute angles θ with ` hatk,` then find the value of θ.
If `veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk` ,then find ` |veca xx vecb|`
Find x such that the four points A(4, 1, 2), B(5, x, 6) , C(5, 1, -1) and D(7, 4, 0) are coplanar.
A line passing through the point A with position vector `veca=4hati+2hatj+2hatk` is parallel to the vector `vecb=2hati+3hatj+6hatk` . Find the length of the perpendicular drawn on this line from a point P with vector `vecr_1=hati+2hatj+3hatk`
if `|vecaxxvecb|^2+|veca.vecb|^2=400 ` and `|vec a| = 5` , then write the value of `|vecb|`
Find `veca.(vecbxxvecc), " if " veca=2hati+hatj+3hatk, vecb=-hati+2hatj+hatk " and " vecc=3hati+hatj+2hatk`
Using vectors find the area of triangle ABC with vertices A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1).
Find the angle between the vectors `2hat"i" - hat"j" + hat"k"` and `3hat"i" + 4hat"j" - hat"k"`.
If `vec"a" + vec"b" + vec"c"` = 0, show that `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"`. Interpret the result geometrically?
Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.
If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`, find a vector `vec"c"` such that `vec"a" xx vec"c" = vec"b"` and `vec"a"*vec"c"` = 3.
The vectors from origin to the points A and B are `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` and `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, respectively, then the area of triangle OAB is ______.
For any vector `vec"a"`, the value of `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` is equal to ______.
If `|vec"a"|` = 10, `|vec"b"|` = 2 and `vec"a".vec"b"` = 12, then value of `|vec"a" xx vec"b"|` is ______.
The vectors `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` and `2hat"i" - hat"j" + lambdahat"k"` are coplanar if ______.
If `|vec"a"|` = 4 and −3 ≤ λ ≤ 2, then the range of `|lambdavec"a"|` is ______.
The value of the expression `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` is ______.
If `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 and `|vec"a"|` = 4, then `|vec"b"|` is equal to ______.