हिंदी

वक्र x = at2 और y = 2at द्वारा t = 1 और t = 2 के संगत कोटियों के बीच परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

वक्र x = at2 और y = 2at द्वारा t = 1 और t = 2 के संगत कोटियों के बीच परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।

योग

उत्तर

दिया है : x = at2 ...(i),

y = 2at ...(ii)

जिससे t = `"y"/(2"a")` हुआ।

t का यह मान (i) में रखने पर, 

हमें प्राप्त होता है : y2 = 4ax।

(i) में t = 1 और t = 2 रखने पर,

हमें x = a, और x = 4a प्राप्त होते हैं।

आकृति 8.7 से, वाँछित क्षेत्रफल

= 2 * ABCD का क्षेत्रफल

= `2 int_"a"^(4"a") "yd"x`

= `2 xx 2 int_"a"^(4"a") sqrt("a"x)  "d"x`

= `8sqrt("a") |(x)^(3/2)/3|_"a"^(4"a")`

= `56/3 "a"^2` वर्ग इकाई

shaalaa.com
समाकलनों के अनुप्रयोग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: स्माकलो के अनुप्रयोग - हल किए हुए उदाहरण [पृष्ठ १६९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 8 स्माकलो के अनुप्रयोग
हल किए हुए उदाहरण | Q 7 | पृष्ठ १६९

संबंधित प्रश्न

वक्र ay2 = x3, y-अक्ष तथा y = a और y = 2a रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलयों y2 = 6x और x2 = 6y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


x-अक्ष के ऊपर परवलय y2 = ax और वृत्त x2 + y2 = 2ax के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखा x = `"a"/2` द्वारा वृत्त x2 + y2 = a2 के काटे गए एक लघु वृत्तखंड का क्षेत्रफल ज्ञात कीजिए।


वृत्त x2 + y2 = 2 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल बराबर है


दीर्घवृत्त  `x^2/"a"^2 + y^2/"b"^2` = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल बराबर है


वक्र y = x2 और रेखा y = 16 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र y = x2 + x, x-अक्ष तथा x = 2 और x = 5 रेखाओं से परिबद्ध क्षेत्र का क्षेत्रफल के ______ बराबर है।


परवलय y2 = 2px, और x2 = 2py से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = x3 , y = x + 6 और x = 0 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


क्षेत्र `{(x, 0) : y = sqrt(4 - x^2)}` और x-अक्ष का चित्रण कीजिए। समाकलन का उपयोग करते हुए इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = 2`sqrtx`  के अंतर्गत x = 0 और x = 1 रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = `sqrt("a"^2 - x^2)` के अंतर्गत तथा x = 0 और x = a रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y2 = 2x और x2 + y2 = 4x से परिंबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखा x + 2y = 2, y – x = 1 और 2x + y = 7 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = 2cosx तथा x-अक्ष द्वारा x = 0 से x = 2π तक परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


प्रथम चतुर्थाश में, x-अक्ष, रेखा y = x और वृत्त x2 + y2 = 32 द्वारा घिरे क्षेत्र का क्षेत्रफल है-


परवलय y2 = x और सरल रेखा 2y = x से परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र y = sinx द्वारा कोटि x = 0, और x = `pi/2` तथा x-अक्ष के बीच परिबद्ध क्षेत्र का क्षेत्रफल है


वृत्त x2 + y2 = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र x = 2y + 3 तथा y = 1 और y = –1 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×