हिंदी

रेखा x + 2y = 2, y – x = 1 और 2x + y = 7 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

रेखा x + 2y = 2, y – x = 1 और 2x + y = 7 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।

योग

उत्तर

दिया गया है कि: x + 2y = 2  .....(i)

y – x = 1   ......(ii)

और 2x + y = 7   ......(iii)

x 0 2
y 1 0

 

x 0 –1
y 1 0

 

x 0 `7/2`
y 7 0

समीकरणों (ii) और (iii) को हल करना, 

हमें y = 1 + x प्राप्त होता है

∴ 2x + 1 + x = 7

3x = 6

⇒ x = 2

∴ y = 1 + 2

= 3

B के निर्देशांक = (2, 3)

समीकरणों (i) और (iii) को हल करना, 

हमें x + 2y = 2 प्राप्त होता है

∴ x = 2 – 2y

2x + y = 7

2(2 – 2y) + y = 7

⇒ 4 – 4y + y = 7

⇒ –3y = 3

∴ y = –1 and x = 4

∴ C के निर्देशांक = (4, – 1) और A के निर्देशांक = (0, 1)

y-अक्ष पर सीमाएँ लेते हुए, हम प्राप्त करते हैं

`int_(-1)^3 x_"BC" "dy" - int_(-1)^1  x_"AC" "dy" - int_1^3  x_"AB" "dy"`

= `int_(-1)^3 (7 - "y")/2  "dy" - int_(-1)^1 (2 - 2"y")  "dy" - int_1^3 ("y" - 1) "dy"`

= `1/2 [7"y" - "y"^2/2]_-1^2 - 2["y" - "y"^2/2]_-1^1 - ["y"^2/2 - "y"]_1^3`

= `1/2[(21 - 9/2) - (7 - 1/2)] - 2[(1 - 1/2) - (-1 - 1/2)] - [(9/2 - 3) - (1/2 - 1)]`

= `1/2[33/2 + 15/2] - 2[1/2 + 3/2] - [3/2 + 1/2]`

= `1/2 xx 24 - 2 xx 2 - 2`

⇒ 12 – 4 – 2 = 6 वर्ग इकाई

इस प्रकार, वाँछित क्षेत्रफल = 6 वर्ग इकाई

shaalaa.com
समाकलनों के अनुप्रयोग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: स्माकलो के अनुप्रयोग - प्रश्नावली [पृष्ठ १७३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 8 स्माकलो के अनुप्रयोग
प्रश्नावली | Q 20 | पृष्ठ १७३

संबंधित प्रश्न

समाकलन विधि का उपयोग करते हुए वक्र |x| + |y| = 1से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


समाकलन विधि का उपयोग करते हुए एक ऐसे त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए जिसके शीर्षों के निर्देशांक A(2, 0), B (4, 5) एवं C (6, 3) हैं।


समाकलन विधि का उपयोग करते हुए, रेखाओं 2x + y = 4, 3x – 2y = 6 एवं x – 3y + 5 = 0 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलय y2 = 2x और सरल रेखा x - y = 4 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलयों y2 = 6x और x2 = 6y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र x = 3 cost, y = 2 sint से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र x = at2 और y = 2at द्वारा t = 1 और t = 2 के संगत कोटियों के बीच परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र x = y2 , y-अक्ष तथा रेखा y = 3 और y = 4 से परिबद्ध क्षेत्र का क्षेत्रफल ______ है।


वक्र y2 = 9x, और y = 3x से परिबद्ध क्षेत्रफल का क्षेत्रफल ज्ञात कीजिए।


परवलय y2 = 2px, और x2 = 2py से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


y2 = 9x और y = x बीच में पड़ने वाले क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखा x = 2 और परवलय y2 = 8x से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = 2`sqrtx`  के अंतर्गत x = 0 और x = 1 रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = `sqrt(x - 1)` का अंतराल [1, 5] में एक संभावित आकृति खींचिए। इस वक्र के अंतर्गत तथा x = 1 और x = 5 रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = `sqrt("a"^2 - x^2)` के अंतर्गत तथा x = 0 और x = a रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


क्षेत्र `{(x, "y") : "y"^2 ≤ 6"a"x  "और"  x^2 + "y"^2≤ 16"a"^2}`  का एक संभावित आकृति खींचिए। साथ ही,समाकलन की विधि द्वारा इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखाओं y = 4x + 5, y = 5 – x और 4y = x + 5 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


y-अक्ष, y = cosx, y = sinx, 0 ≤ x ≤ `pi/2` से परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र y = `sqrt(16 - x^2)` और x-अक्ष से परिबद्ध क्षेत्र का क्षेत्रफल है


प्रथम चतुर्थाश में, x-अक्ष, रेखा y = x और वृत्त x2 + y2 = 32 द्वारा घिरे क्षेत्र का क्षेत्रफल है-


वृत्त x2 + y2 = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र y = x + 1 तथा x = 2 और x = 3 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र x = 2y + 3 तथा y = 1 और y = –1 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×