Advertisements
Advertisements
प्रश्न
वक्र x = 3 cost, y = 2 sint से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
उत्तर
t को निम्नलिखित प्रकार से लुप्त कीजिए;
x = 3 cost
y = 2 sint
⇒ `x/3` = cost
तथा `"y"/2` = sin t
इनसे हमें, प्राप्त होता है:
`x^2/9 + "y"^2/4` = 1 जो एक दीर्घवृत्त का समीकरण है।
प्रश्न में दिए गए आकृति से, हम प्राप्त करते हैं
वाँछित क्षेत्रफल = `4 int_0^3 2/3 sqrt(9 - x^2) "d"x`
= `8/3 [x/2 sqrt(9 - x^2) + 9/2 sin^-1 x/3]_0^3`
= 6π वर्ग इकाई
APPEARS IN
संबंधित प्रश्न
समाकलन विधि का उपयोग करते हुए एक ऐसे त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए जिसके शीर्षों के निर्देशांक A(2, 0), B (4, 5) एवं C (6, 3) हैं।
समाकलन विधि का उपयोग करते हुए, रेखाओं 2x + y = 4, 3x – 2y = 6 एवं x – 3y + 5 = 0 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
0 और π के बीच, वक्र y = sin x का क्षेत्रफल ज्ञात कीजिए।
वक्र ay2 = x3, y-अक्ष तथा y = a और y = 2a रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय y2 = 2x और सरल रेखा x - y = 4 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलयों y2 = 6x और x2 = 6y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
x-अक्ष के ऊपर परवलय y2 = ax और वृत्त x2 + y2 = 2ax के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
रेखा x = `"a"/2` द्वारा वृत्त x2 + y2 = a2 के काटे गए एक लघु वृत्तखंड का क्षेत्रफल ज्ञात कीजिए।
वक्र y = x2 और रेखा y = 16 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
वक्र x = y2 , y-अक्ष तथा रेखा y = 3 और y = 4 से परिबद्ध क्षेत्र का क्षेत्रफल ______ है।
वक्र y2 = 9x, और y = 3x से परिबद्ध क्षेत्रफल का क्षेत्रफल ज्ञात कीजिए।
परवलय y2 = 2px, और x2 = 2py से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
y2 = 9x और y = x बीच में पड़ने वाले क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय x2 = y और रेखा y = x + 2 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
क्षेत्र `{(x, 0) : y = sqrt(4 - x^2)}` और x-अक्ष का चित्रण कीजिए। समाकलन का उपयोग करते हुए इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y2 = 2x और x2 + y2 = 4x से परिंबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
x = 0 और x = 2π के बीच वक्र y = sinx द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
रेखाओं y = 4x + 5, y = 5 – x और 4y = x + 5 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = 2cosx तथा x-अक्ष द्वारा x = 0 से x = 2π तक परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र x2 = 4y और सरल रेखा x = 4y – 2 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
वक्र y = `sqrt(16 - x^2)` और x-अक्ष से परिबद्ध क्षेत्र का क्षेत्रफल है
परवलय y2 = x और सरल रेखा 2y = x से परिबद्ध क्षेत्र का क्षेत्रफल है
दीर्घवृत्त `x^2/25 + "y"^2/16` = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
वक्र x = 2y + 3 तथा y = 1 और y = –1 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है