Advertisements
Advertisements
प्रश्न
परवलयों y2 = 6x और x2 = 6y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
उत्तर
दिए हुए परवलयों के प्रतिच्छेद बिंदु इन के समीकरणों को x और y के लिए हल करके ज्ञात किए जा सकते हैं।
ये बिंदु 0(0, 0) और (6, 6) हैं।
अतः, OABC का क्षेत्रफल = `int_0^6 sqrt(6x) - x^2/6 "d"x`
= `|2sqrt6 (x^(3/2))/3 - x^3/18|_0^6`
= `2sqrt6 ((6)^(3/2))/3 - (6)^3/18`
= 12 वर्ग इकाई
APPEARS IN
संबंधित प्रश्न
0 और π के बीच, वक्र y = sin x का क्षेत्रफल ज्ञात कीजिए।
वक्र ay2 = x3, y-अक्ष तथा y = a और y = 2a रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र x = 3 cost, y = 2 sint से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
x-अक्ष के ऊपर परवलय y2 = ax और वृत्त x2 + y2 = 2ax के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
रेखा x = `"a"/2` द्वारा वृत्त x2 + y2 = a2 के काटे गए एक लघु वृत्तखंड का क्षेत्रफल ज्ञात कीजिए।
वृत्त x2 + y2 = 2 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल बराबर है
वक्र x = y2 , y-अक्ष तथा रेखा y = 3 और y = 4 से परिबद्ध क्षेत्र का क्षेत्रफल ______ है।
वक्र y2 = 4x और x2 = 4y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
रेखा x = 2 और परवलय y2 = 8x से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
क्षेत्र `{(x, 0) : y = sqrt(4 - x^2)}` और x-अक्ष का चित्रण कीजिए। समाकलन का उपयोग करते हुए इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = 2`sqrtx` के अंतर्गत x = 0 और x = 1 रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
समाकलन का इस्तेमाल करते हुए, रेखा 2y = 5x + 7, x-अक्ष तथा x = 2 और x = 8 रेखाओं से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = `sqrt(x - 1)` का अंतराल [1, 5] में एक संभावित आकृति खींचिए। इस वक्र के अंतर्गत तथा x = 1 और x = 5 रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = `sqrt("a"^2 - x^2)` के अंतर्गत तथा x = 0 और x = a रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = –x2 और सरल रेखा x + y + 2 = 0 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y2 = 2x और x2 + y2 = 4x से परिंबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
x = 0 और x = 2π के बीच वक्र y = sinx द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
क्षेत्र `{(x, "y") : "y"^2 ≤ 6"a"x "और" x^2 + "y"^2≤ 16"a"^2}` का एक संभावित आकृति खींचिए। साथ ही,समाकलन की विधि द्वारा इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
रेखा x + 2y = 2, y – x = 1 और 2x + y = 7 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
रेखाओं y = 4x + 5, y = 5 – x और 4y = x + 5 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = 2cosx तथा x-अक्ष द्वारा x = 0 से x = 2π तक परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = 1 + |x +1|, x = –3, x = 3 तथा y = 0 का एक संभावित आकृति खींचिए। समाकलन का प्रयोग करते हुए, इन से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
y-अक्ष, y = cosx, y = sinx, 0 ≤ x ≤ `pi/2` से परिबद्ध क्षेत्र का क्षेत्रफल है
वक्र x2 = 4y और सरल रेखा x = 4y – 2 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
वक्र y = sinx द्वारा कोटि x = 0, और x = `pi/2` तथा x-अक्ष के बीच परिबद्ध क्षेत्र का क्षेत्रफल है
वृत्त x2 + y2 = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है