Advertisements
Advertisements
Question
रेखा x + 2y = 2, y – x = 1 और 2x + y = 7 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
Solution
दिया गया है कि: x + 2y = 2 .....(i)
y – x = 1 ......(ii)
और 2x + y = 7 ......(iii)
x | 0 | 2 |
y | 1 | 0 |
x | 0 | –1 |
y | 1 | 0 |
x | 0 | `7/2` |
y | 7 | 0 |
समीकरणों (ii) और (iii) को हल करना,
हमें y = 1 + x प्राप्त होता है
∴ 2x + 1 + x = 7
3x = 6
⇒ x = 2
∴ y = 1 + 2
= 3
B के निर्देशांक = (2, 3)
समीकरणों (i) और (iii) को हल करना,
हमें x + 2y = 2 प्राप्त होता है
∴ x = 2 – 2y
2x + y = 7
2(2 – 2y) + y = 7
⇒ 4 – 4y + y = 7
⇒ –3y = 3
∴ y = –1 and x = 4
∴ C के निर्देशांक = (4, – 1) और A के निर्देशांक = (0, 1)
y-अक्ष पर सीमाएँ लेते हुए, हम प्राप्त करते हैं
`int_(-1)^3 x_"BC" "dy" - int_(-1)^1 x_"AC" "dy" - int_1^3 x_"AB" "dy"`
= `int_(-1)^3 (7 - "y")/2 "dy" - int_(-1)^1 (2 - 2"y") "dy" - int_1^3 ("y" - 1) "dy"`
= `1/2 [7"y" - "y"^2/2]_-1^2 - 2["y" - "y"^2/2]_-1^1 - ["y"^2/2 - "y"]_1^3`
= `1/2[(21 - 9/2) - (7 - 1/2)] - 2[(1 - 1/2) - (-1 - 1/2)] - [(9/2 - 3) - (1/2 - 1)]`
= `1/2[33/2 + 15/2] - 2[1/2 + 3/2] - [3/2 + 1/2]`
= `1/2 xx 24 - 2 xx 2 - 2`
⇒ 12 – 4 – 2 = 6 वर्ग इकाई
इस प्रकार, वाँछित क्षेत्रफल = 6 वर्ग इकाई
APPEARS IN
RELATED QUESTIONS
समाकलन विधि का उपयोग करते हुए एक ऐसे त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए जिसके शीर्षों के निर्देशांक A(2, 0), B (4, 5) एवं C (6, 3) हैं।
वक्र ay2 = x3, y-अक्ष तथा y = a और y = 2a रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय y2 = 2x और सरल रेखा x - y = 4 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र x = 3 cost, y = 2 sint से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
उस क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जो परवलय y = `(3x^2)/4` और रेखा 3x - 2y + 12 = 0 के बीच में परिबद्ध है।
x-अक्ष के ऊपर परवलय y2 = ax और वृत्त x2 + y2 = 2ax के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
रेखा x = `"a"/2` द्वारा वृत्त x2 + y2 = a2 के काटे गए एक लघु वृत्तखंड का क्षेत्रफल ज्ञात कीजिए।
वृत्त x2 + y2 = 2 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल बराबर है
वक्र y = x2 और रेखा y = 16 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
परवलय y2 = 2px, और x2 = 2py से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = x3 , y = x + 6 और x = 0 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
y2 = 9x और y = x बीच में पड़ने वाले क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय x2 = y और रेखा y = x + 2 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = 2`sqrtx` के अंतर्गत x = 0 और x = 1 रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = `sqrt("a"^2 - x^2)` के अंतर्गत तथा x = 0 और x = a रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
y = `sqrtx` और y = x से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = –x2 और सरल रेखा x + y + 2 = 0 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थाश में वक्र y = `sqrtx, x = 2y + 3` और x-अक्ष से परिबद्ध क्षेत्रफल ज्ञात कीजिए।
वक्र y2 = 2x और x2 + y2 = 4x से परिंबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
x = 0 और x = 2π के बीच वक्र y = sinx द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
समाकलन का प्रयोग करते हुए, उस त्रिभुज द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जिसके शीर्ष (-1, 1), (0, 5) और (3, 2) हैं।
वक्र y = 2cosx तथा x-अक्ष द्वारा x = 0 से x = 2π तक परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = sinx द्वारा कोटि x = 0, और x = `pi/2` तथा x-अक्ष के बीच परिबद्ध क्षेत्र का क्षेत्रफल है
वक्र y = x + 1 तथा x = 2 और x = 3 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
वक्र x = 2y + 3 तथा y = 1 और y = –1 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है