English

क्षेत्र yyaऔरya{(x,y):y2≤6ax और x2+y2≤16a2} का एक संभावित आकृति खींचिए। साथ ही,समाकलन की विधि द्वारा इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

क्षेत्र `{(x, "y") : "y"^2 ≤ 6"a"x  "और"  x^2 + "y"^2≤ 16"a"^2}`  का एक संभावित आकृति खींचिए। साथ ही,समाकलन की विधि द्वारा इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए।

Sum

Solution

दिया है कि: {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}

परवलय का समीकरण y2 = 6ax  .....(i)

और वृत्त का समीकरण है x2 + y2 ≤ 16a2  .....(ii)

समीकरण हल करना (i) और (ii)

हमें प्राप्त होता है x2 + 6ax = 16a2

⇒ x2 + 6ax – 16a2 = 0

⇒ x2 + 8ax – 2ax – 16a2 = 0

⇒ x(x + 8a) – 2a(x + 8a) = 0

⇒ (x + 8a)(x – 2a) = 0

∴ x = 2a and x = – 8a.  .....(क्षेत्र से बाहर होने के कारण अस्वीकृत)

वाँछित क्षेत्र का क्षेत्रफल

= `2[int_0^(2"a") sqrt(6"a"x)  "d"x + int_(2"a")^(4"a") sqrt(16"a"^2 - x^2)  "d"x]`

= `2[sqrt(6"a") int_0^(2"a") sqrt(x)  "d"x + int_(2"a")^(4"a")  sqrt((4"a")^2 - x^2)  "d"x]`

= `2sqrt(6"a") * 2/3 * [x^(3/2)]_0^(2"a") + 2[x/2 sqrt((4"a")^2 - x^2) + (16"a"^2)/2 sin^-1  x/(4"a")]_(2"a")^(4"a")`

= `(4sqrt(6))/3 * sqrt("a") [(2"a")^(3/2) - 0] + [xsqrt((4"a")^2 - x^2) + 16"a"^2 sin^-1  x/(4"a")]_(2"a")^(4"a")`

= `(8sqrt(12))/3 "a"^2 + [16"a"^2  8sin^-1 (1) - 2"a"sqrt(12"a"^2) - 16"a"^2 sin^-1  1/2]`

= `(16sqrt(13))/3 "a"^2 + [16"a"^2 * pi/2 - 2"a" * 2sqrt(3)"a" - 16"a"^2 * pi/6]`

= `(16sqrt(3))/3 "a"^2 + 8pi"a"^2 - 4sqrt(3)"a"^2 - 8/3 pi"a"^2`

= `((16sqrt(3))/3 - 4sqrt(3))"a"^2 + 16/3 pi"a"^2`

= `(4sqrt(3))/3 "a"^2 + 16/3 pi"a"^2`

= `4/3 (sqrt(3) + 4pi)"a"^2`

इस प्रकार, वाँछित क्षेत्रफल = `4/3(sqrt(3) + 4pi)"a"^2` वर्ग इकाई

shaalaa.com
समाकलनों के अनुप्रयोग
  Is there an error in this question or solution?
Chapter 8: स्माकलो के अनुप्रयोग - प्रश्नावली [Page 173]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 8 स्माकलो के अनुप्रयोग
प्रश्नावली | Q 19 | Page 173

RELATED QUESTIONS

समाकलन विधि का उपयोग करते हुए एक ऐसे त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए जिसके शीर्षों के निर्देशांक A(2, 0), B (4, 5) एवं C (6, 3) हैं।


वक्र ay2 = x3, y-अक्ष तथा y = a और y = 2a रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलय y2 = 2x और सरल रेखा x - y = 4 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलयों y2 = 6x और x2 = 6y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र x = 3 cost, y = 2 sint से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


उस क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जो परवलय y = `(3x^2)/4` और रेखा 3x - 2y + 12 = 0 के बीच में परिबद्ध है।


वक्र x = at2 और y = 2at द्वारा t = 1 और t = 2 के संगत कोटियों के बीच परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


दीर्घवृत्त  `x^2/"a"^2 + y^2/"b"^2` = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल बराबर है


वक्र y = x2 + x, x-अक्ष तथा x = 2 और x = 5 रेखाओं से परिबद्ध क्षेत्र का क्षेत्रफल के ______ बराबर है।


परवलय y2 = 2px, और x2 = 2py से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = x3 , y = x + 6 और x = 0 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y2 = 4x और x2 = 4y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


y2 = 9x और y = x बीच में पड़ने वाले क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखा x = 2 और परवलय y2 = 8x से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


क्षेत्र `{(x, 0) : y = sqrt(4 - x^2)}` और x-अक्ष का चित्रण कीजिए। समाकलन का उपयोग करते हुए इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


समाकलन का इस्तेमाल करते हुए, रेखा 2y = 5x + 7, x-अक्ष तथा x = 2 और x = 8 रेखाओं से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


y = `sqrtx` और y = x से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


प्रथम चतुर्थाश में वक्र y = `sqrtx, x = 2y + 3` और x-अक्ष से परिबद्ध क्षेत्रफल ज्ञात कीजिए।


वक्र y2 = 2x और x2 + y2 = 4x से परिंबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखा x + 2y = 2, y – x = 1 और 2x + y = 7 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखाओं y = 4x + 5, y = 5 – x और 4y = x + 5 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = 2cosx तथा x-अक्ष द्वारा x = 0 से x = 2π तक परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = 1 + |x +1|, x = –3, x = 3 तथा y = 0 का एक संभावित आकृति खींचिए। समाकलन का प्रयोग करते हुए, इन से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


दीर्घवृत्त `x^2/25 + "y"^2/16` = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र y = x + 1 तथा x = 2 और x = 3 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र x = 2y + 3 तथा y = 1 और y = –1 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×