Advertisements
Advertisements
Question
रेखाओं y = 4x + 5, y = 5 – x और 4y = x + 5 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
Solution
दिया है कि y = 4x + 5 .....(i)
y = 5 – x ......(ii)
और 4y = x + 5 ......(iii)
x | 0 | `-5/4` |
y | 5 | 0 |
x | 0 | 5 |
y | 5 | 0 |
x | 0 | –5 |
y | `5/4` | 0 |
समीकरणों (i) और (ii) को हल करना
हमें 4x + 5 = 5 – x प्राप्त होता है
⇒ x = 0 और y = 5
∴ A के निर्देशांक = (0, 5)
समीकरणों (ii) और (iii) को हल करना
y = 5 – x
4y = x + 5
5y = 10
∴ y = 2 and x = 3
∴ B के निर्देशांक = (3, 2)
समीकरणों (i) और (iii) को हल करना
y = 4x + 5
4y = x + 5
⇒ 4(4x + 5) = x + 5
⇒ 16x + 20 = x + 5
⇒ 15x = – 15
∴ x = –1 और y = 1
∴ C के निर्देशांक = (–1, 1).
∴ वाँछित क्षेत्रों का क्षेत्रफल = `int_(-1)^0 "y"_"AC" "d"x + int_0^3 "y"_"AB" "d"x - int_(-1)^3 "y"_"CB" "d"x`
= `int_(-1)^0 (4x + 5) "d"x + int_0^3 (5 - x) "d"x - int_(-1)^3 (x + 5)/4 "d"x`
= `[4 x^2/2 + 5x]_-1^0 + [5x - x^2/2]_0^3 - 1/4[x^2/2 + 5x]_-1^3`
= `[(0 + 0) - (2 - 5)] + [(15 - 9/2) - (0 - 0)] - 1/4[(9/2 + 15) - (1/2 - 5)]`
= `3 + 21/2 - 1/4[39/2 + 9/2]`
= `3 + 21/2 - 1/4 xx 24`
⇒ `3 + 21/2 - 6`
= `15/2` वर्ग इकाई
इस प्रकार, वाँछित क्षेत्रफल = `15/2` वर्ग इकाई
APPEARS IN
RELATED QUESTIONS
समाकलन विधि का उपयोग करते हुए वक्र |x| + |y| = 1से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
समाकलन विधि का उपयोग करते हुए एक ऐसे त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए जिसके शीर्षों के निर्देशांक A(2, 0), B (4, 5) एवं C (6, 3) हैं।
वक्र x = 3 cost, y = 2 sint से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
उस क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जो परवलय y = `(3x^2)/4` और रेखा 3x - 2y + 12 = 0 के बीच में परिबद्ध है।
वक्र x = at2 और y = 2at द्वारा t = 1 और t = 2 के संगत कोटियों के बीच परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वृत्त x2 + y2 = 2 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल बराबर है
दीर्घवृत्त `x^2/"a"^2 + y^2/"b"^2` = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल बराबर है
वक्र x = y2 , y-अक्ष तथा रेखा y = 3 और y = 4 से परिबद्ध क्षेत्र का क्षेत्रफल ______ है।
परवलय y2 = 2px, और x2 = 2py से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय x2 = y और रेखा y = x + 2 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
समाकलन का इस्तेमाल करते हुए, रेखा 2y = 5x + 7, x-अक्ष तथा x = 2 और x = 8 रेखाओं से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = `sqrt("a"^2 - x^2)` के अंतर्गत तथा x = 0 और x = a रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
y = `sqrtx` और y = x से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = –x2 और सरल रेखा x + y + 2 = 0 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
x = 0 और x = 2π के बीच वक्र y = sinx द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
क्षेत्र `{(x, "y") : "y"^2 ≤ 6"a"x "और" x^2 + "y"^2≤ 16"a"^2}` का एक संभावित आकृति खींचिए। साथ ही,समाकलन की विधि द्वारा इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
रेखा x + 2y = 2, y – x = 1 और 2x + y = 7 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = 2cosx तथा x-अक्ष द्वारा x = 0 से x = 2π तक परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = `sqrt(16 - x^2)` और x-अक्ष से परिबद्ध क्षेत्र का क्षेत्रफल है
प्रथम चतुर्थाश में, x-अक्ष, रेखा y = x और वृत्त x2 + y2 = 32 द्वारा घिरे क्षेत्र का क्षेत्रफल है-
वक्र y = sinx द्वारा कोटि x = 0, और x = `pi/2` तथा x-अक्ष के बीच परिबद्ध क्षेत्र का क्षेत्रफल है
वृत्त x2 + y2 = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
वक्र y = x + 1 तथा x = 2 और x = 3 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है