Advertisements
Advertisements
प्रश्न
x and b are real numbers. If b > 0 and |x| > b, then ______.
विकल्प
x ∈ (–b, ∞)
x ∈ [–∞, b)
x ∈ (–b, b)
x ∈ (–∞, –b) ∪ (b, ∞)
उत्तर
x and b are real numbers. If b > 0 and |x| > b, then x ∈ (–∞, –b) ∪ (b, ∞).
Explanation:
Given that |x| > b, b > 0
⇒ x < –b or x > b
⇒ x ∈ (–∞, –b) ∪ (b, ∞)
APPEARS IN
संबंधित प्रश्न
3x − 7 > x + 1
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{1}{x - 1} \leq 2\]
\[\frac{4x + 3}{2x - 5} < 6\]
\[\frac{x - 1}{x + 3} > 2\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
2 (x − 6) < 3x − 7, 11 − 2x < 6 − x
Solve the following system of equation in R.
\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\]
Solve \[1 \leq \left| x - 2 \right| \leq 3\]
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Mark the correct alternative in each of the following:
If \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
If –x ≤ –4, then 2x ______ 8.
If a < b and c < 0, then `a/c` ______ `b/c`.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
If p > 0 and q < 0, then p + q ______ p.
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
If x < 5, then ______.
If –3x + 17 < –13, then ______.
If x > – 5, then 4x ______ –20.
If x > y and z < 0, then – xz ______ – yz.
If p > 0 and q < 0, then p – q ______ p.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.