Advertisements
Advertisements
प्रश्न
Solve the following system of equation in R.
\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\]
उत्तर
`(2x + 1)/(7x - 1) - 5 > 0`
⇒ `((2x + 1) - 5(7x - 1))/(7x - 1)>0`
⇒ `(2x + 1 - 35x + 5)/(7x - 1)>0`
⇒ `(-33x + 6)/(7x - 1)>0`
⇒ `(11x - 2)/(7x - 1)<0`
⇒ 11x − 2 < 0 and 7x − 1 > 0 or 11x − 2 > 0 and 7x − 1 < 0
⇒ x < 2/11 and x > 1/7 or x > 2/11 and x < 1/7
⇒ x ∈ (1/7, 2/11) ...(i)
Also `(x + 7)/(x - 8)>2`
⇒ `(x + 7)/(x - 8) - 2 > 0`
⇒ `(x + 7 - 2 (x - 8))/(x - 8)>0`
⇒ `(x + 7 - 2x + 16)/(x - 8)>0`
⇒ `(-x + 23)/(x - 8)>0`
⇒ `(x - 23)/(x - 8)<0`
⇒ x − 23 < 0 and x − 8 > 0 or x − 23 > 0 and x − 8 < 0
⇒ x < 23 and x > 8 or x > 23 and x < 8
⇒ x ∈ (8, 23) ...(ii)
From (i) and (ii), we can find that there is no common set of values of x. So, the given system of equation has no solution
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ Z
3x + 9 ≥ −x + 19
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{3}{x - 2} < 1\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
Solve each of the following system of equations in R.
3x − 6 > 0, 2x − 5 > 0
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
\[\left| x - 1 \right|\]\[>\]5, then
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
If `|x - 2|/(x - 2) ≥ 0`, then ______.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If |x + 3| ≥ 10, then ______.
If x ≥ –3, then x + 5 ______ 2.
If a < b and c < 0, then `a/c` ______ `b/c`.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
Solve for x, the inequality given below.
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?
Given that x, y and b are real numbers and x < y, b < 0, then ______.
If x is a real number and |x| < 3, then ______.
If |x + 2| ≤ 9, then ______.
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If `2/(x + 2) > 0`, then x ______ –2.
If x > y and z < 0, then – xz ______ – yz.
If p > 0 and q < 0, then p – q ______ p.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.