हिंदी

Solve each of the following system of equations in R. 2x − 7 > 5 − x, 11 − 5x ≤ 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve each of the following system of equations in R.

2x − 7 > 5 − x, 11 − 5x ≤ 1

योग

उत्तर

Given as

2x – 7 > 5 – x and 11 – 5x ≤ 1

Now, let us consider the first inequality.

2x – 7 > 5 – x

2x – 7 + 7 > 5 – x + 7

2x > 12 – x

2x + x > 12 – x + x

3x > 12

Dividing both the sides by 3 we get,

`(3x)/3 > 12/3`

x > 4

∴ x ∈ (4, ∞)             ...(1)

Then, let us consider the second inequality.

11 – 5x ≤ 1

11 – 5x – 11 ≤ 1 – 11

– 5x ≤ – 10

Dividing both the sides by 5 we get,

`(– 5x)/5 ≤ (–10)/5`

–x ≤ –2

x ≥ 2

∴ x ∈ (2, ∞)           ...(2)

From (1) and (2) we get

x ∈ (4, ∞) ∩ (2, ∞)

x ∈ (4, ∞)

Hence, the solution of the given system of inequations is (4, ∞).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.2 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.2 | Q 2 | पृष्ठ १०

संबंधित प्रश्न

Solve: 4x − 2 < 8, when x ∈ R 


Solve: 4x − 2 < 8, when x ∈ N 


x + 5 > 4x − 10 


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[x - 2 \leq \frac{5x + 8}{3}\] 


\[\frac{x}{x - 5} > \frac{1}{2}\] 


2x + 6 ≥ 0, 4x − 7 < 0 


Solve each of the following system of equations in R. 

3x − 6 > 0, 2x − 5 > 0 


Solve each of the following system of equations in R.

11 − 5x > −4, 4x + 13 ≤ −11 


Solve each of the following system of equations in R. 

\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve  \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\] 


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 


Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then


Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in


Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is 


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


Solve `(x - 2)/(x + 5) > 2`.


Solve |3 – 4x| ≥ 9.


Solve 1 ≤ |x – 2| ≤ 3.


The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit? 


If |x + 3| ≥ 10, then ______.


If –x ≤ –4, then 2x ______ 8.


If p > 0 and q < 0, then p + q ______ p.


Solve for x, the inequality given below.

`-5 ≤ (2 - 3x)/4 ≤ 9`


The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.


Given that x, y and b are real numbers and x < y, b < 0, then ______.


If x > y and z < 0, then – xz ______ – yz.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×