हिंदी

4 + 2 X 3 ≥ X 2 − 3 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]

उत्तर

\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[ \Rightarrow \frac{4 + 2x}{3} - \frac{x}{2} \geq - 3\]
\[ \Rightarrow \frac{8 + 4x - 3x}{6} \geq - 3\]
\[ \Rightarrow 8 + x \geq - 18 \left[ \text{ Multiplying both the sides by 6 } \right]\]
\[ \Rightarrow x \geq - 26 \left[ \text{ Transposing 8 to the RHS } \right]\]
\[\text{ Thus, the solution set of the given inequation is } [ - 26, \infty ) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.1 | Q 16 | पृष्ठ १०

संबंधित प्रश्न

Solve: −4x > 30, when  x ∈ R 


Solve: 4x − 2 < 8, when x ∈ Z 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


−(x − 3) + 4 < 5 − 2x


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[x - 2 \leq \frac{5x + 8}{3}\] 


Solve each of the following system of equations in R. 

3x − 6 > 0, 2x − 5 > 0 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. 

\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]


Solve each of the following system of equations in R. 

\[0 < \frac{- x}{2} < 3\] 


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in


Solve |3 – 4x| ≥ 9.


Solve 1 ≤ |x – 2| ≤ 3.


The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit? 


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


If `|x - 2|/(x - 2) ≥ 0`, then ______.


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If a < b and c < 0, then `a/c` ______ `b/c`.


If |x − 1| ≤ 2, then –1 ______ x ______ 3


Solve for x, the inequality given below.

`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


Solve for x, the inequality given below.

`-5 ≤ (2 - 3x)/4 ≤ 9`


Solve for x, the inequality given below.

4x + 3 ≥ 2x + 17, 3x – 5 < –2


A solution of 9% acid is to be diluted by adding 3% acid solution to it. The resulting mixture is to be more than 5% but less than 7% acid. If there is 460 litres of the 9% solution, how many litres of 3% solution will have to be added? 


Given that x, y and b are real numbers and x < y, b < 0, then ______.


State which of the following statement is True or False.

If xy < 0, then x < 0 and y < 0


If – 4x ≥ 12, then x ______ – 3.


If `2/(x + 2) > 0`, then x  ______ –2.


If p > 0 and q < 0, then p – q ______ p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×