Advertisements
Advertisements
Question
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
Solution
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[ \Rightarrow \frac{4 + 2x}{3} - \frac{x}{2} \geq - 3\]
\[ \Rightarrow \frac{8 + 4x - 3x}{6} \geq - 3\]
\[ \Rightarrow 8 + x \geq - 18 \left[ \text{ Multiplying both the sides by 6 } \right]\]
\[ \Rightarrow x \geq - 26 \left[ \text{ Transposing 8 to the RHS } \right]\]
\[\text{ Thus, the solution set of the given inequation is } [ - 26, \infty ) .\]
APPEARS IN
RELATED QUESTIONS
Solve: 12x < 50, when x ∈ Z
Solve: −4x > 30, when x ∈ R
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[x - 2 \leq \frac{5x + 8}{3}\]
\[\frac{6x - 5}{4x + 1} < 0\]
\[\frac{3}{x - 2} < 1\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{x - 1}{x + 3} > 2\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
x − 2 > 0, 3x < 18
Solve each of the following system of equations in R.
11 − 5x > −4, 4x + 13 ≤ −11
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Solve \[1 \leq \left| x - 2 \right| \leq 3\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Mark the correct alternative in each of the following:
If − 3x\[+\]17\[< -\]13, then
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve |3 – 4x| ≥ 9.
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
Solve for x, the inequality given below.
`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit?
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If `2/(x + 2) > 0`, then x ______ –2.
If x > y and z < 0, then – xz ______ – yz.
If p > 0 and q < 0, then p – q ______ p.