English

X − 1 3 + 4 < X − 5 5 − 2 - Mathematics

Advertisements
Advertisements

Question

\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]

Solution

\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[ \Rightarrow \frac{x - 1}{3} - \frac{x - 5}{5} < - 2 - 4 \left[ \text{ Transposing 4 to the RHS and \frac{x - 5}{5} to the LHS } \right]\]
\[ \Rightarrow \frac{5\left( x - 1 \right) - 3\left( x - 5 \right)}{15} < - 6\]
\[ \Rightarrow \frac{5x - 5 - 3x + 15}{15} < - 6\]
\[ \Rightarrow \frac{2x + 10}{15} < - 6\]
\[ \Rightarrow 2x + 10 < - 90\]
\[ \Rightarrow 2x < - 90 - 10 \left[ \text{ Transposing 10 to the RHS } \right]\]
\[ \Rightarrow 2x < - 100 \]
\[ \Rightarrow x < - \frac{100}{2} \left[ \text{ Dividing both the sides by 2 } \right]\]
\[ \Rightarrow x < - 50\]
\[\text{ Hence, the solution of the given inequation is } \left( - \infty , - 50 \right) . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.1 | Q 13 | Page 10

RELATED QUESTIONS

Solve: 12x < 50, when x ∈ R 


Solve: −4x > 30, when x ∈ N 


x + 5 > 4x − 10 


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{x - 1}{x + 3} > 2\]


\[\frac{7x - 5}{8x + 3} > 4\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve each of the following system of equations in R. 

3x − 6 > 0, 2x − 5 > 0 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 


Solve each of the following system of equations in R. 

\[0 < \frac{- x}{2} < 3\] 


Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Solve  \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\] 


Solve  \[\left| 3 - 4x \right| \geq 9\]


Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is 


If a < b and c < 0, then `a/c` ______ `b/c`.


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


Solve for x, the inequality given below.

`-5 ≤ (2 - 3x)/4 ≤ 9`


Solve for x, the inequality given below.

4x + 3 ≥ 2x + 17, 3x – 5 < –2


The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.


A solution of 9% acid is to be diluted by adding 3% acid solution to it. The resulting mixture is to be more than 5% but less than 7% acid. If there is 460 litres of the 9% solution, how many litres of 3% solution will have to be added? 


The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.


If x < 5, then ______.


If `(-3)/4 x ≤ – 3`, then x ______ 4.


If |x + 2| > 5, then x ______ – 7 or x ______ 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×