English

2 X + 3 4 − 3 < X − 4 3 − 2 - Mathematics

Advertisements
Advertisements

Question

\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]

Solution

\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[ \Rightarrow \frac{2x + 3}{4} - \frac{x - 4}{3} < - 2 + 3 (\text{ Transposing } \frac{x - 4}{3} \text{ to the LHS }\hspace{0.167em} \text{ and - 3 to the RHS })\]
\[ \Rightarrow \frac{3\left( 2x + 3 \right) - 4\left( x - 4 \right)}{12} < 1\]
\[ \Rightarrow 3\left( 2x + 3 \right) - 4\left( x - 4 \right) < 12 (\text{ Multiplying both the sides by } 12)\]
\[ \Rightarrow 6x + 9 - 4x + 16 < 12\]
\[ \Rightarrow 2x + 25 < 12\]
\[ \Rightarrow 2x < 12 - 25\]
\[ \Rightarrow 2x < - 13\]
\[ \Rightarrow x < - \frac{13}{2} (\text{ Dividing both the sides by 2 })\]
\[\text{ Hence, the solution of the given inequation is } \left( - \infty , - \frac{13}{2} \right) .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.1 | Q 14 | Page 10

RELATED QUESTIONS

Solve: 12x < 50, when x ∈ N 


Solve: −4x > 30, when  x ∈ R 


Solve: −4x > 30, when x ∈ N 


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{1}{x - 1} \leq 2\]


\[\frac{7x - 5}{8x + 3} > 4\]


Solve each of the following system of equations in R.

2x − 7 > 5 − x, 11 − 5x ≤ 1


Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in


Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is 


Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then


Solve for x, |x + 1| + |x| > 3.


If a < b and c < 0, then `a/c` ______ `b/c`.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


If p > 0 and q < 0, then p + q ______ p.


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


Solve for x, the inequality given below.

4x + 3 ≥ 2x + 17, 3x – 5 < –2


The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.


The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.


State which of the following statement is True or False.

If xy < 0, then x < 0 and y < 0


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If x > y and z < 0, then – xz ______ – yz.


If p > 0 and q < 0, then p – q ______ p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×